ﻻ يوجد ملخص باللغة العربية
Based on filter magnitude ranking (e.g. L1 norm), conventional filter pruning methods for Convolutional Neural Networks (CNNs) have been proved with great effectiveness in computation load reduction. Although effective, these methods are rarely analyzed in a perspective of filter functionality. In this work, we explore the filter pruning and the retraining through qualitative filter functionality interpretation. We find that the filter magnitude based method fails to eliminate the filters with repetitive functionality. And the retraining phase is actually used to reconstruct the remained filters for functionality compensation for the wrongly-pruned critical filters. With a proposed functionality-oriented pruning method, we further testify that, by precisely addressing the filter functionality redundancy, a CNN can be pruned without considerable accuracy drop, and the retraining phase is unnecessary.
Pruning has become a very powerful and effective technique to compress and accelerate modern neural networks. Existing pruning methods can be grouped into two categories: filter pruning (FP) and weight pruning (WP). FP wins at hardware compatibility
Filter pruning is widely used to reduce the computation of deep learning, enabling the deployment of Deep Neural Networks (DNNs) in resource-limited devices. Conventional Hard Filter Pruning (HFP) method zeroizes pruned filters and stops updating the
This paper proposes a reliable neural network pruning algorithm by setting up a scientific control. Existing pruning methods have developed various hypotheses to approximate the importance of filters to the network and then execute filter pruning acc
In this paper, we propose a simple and effective network pruning framework, which introduces novel weight-dependent gates to prune filter adaptively. We argue that the pruning decision should depend on the convolutional weights, in other words, it sh
We present a provable, sampling-based approach for generating compact Convolutional Neural Networks (CNNs) by identifying and removing redundant filters from an over-parameterized network. Our algorithm uses a small batch of input data points to assi