ﻻ يوجد ملخص باللغة العربية
The effects of neutron skin on the multiplicity ($N_{rm ch}$) and eccentricity($epsilon_2$) in relativistic $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{rm NN}}}=200$ GeV are investigated with the Trento model. It is found that the Ru+Ru/Zr+Zr ratios of the $N_{rm ch}$ distributions and $epsilon_{2}$ in mid-central collisions are exquisitely sensitive to the neutron skin type (skin vs.~halo). The state-of-the-art calculations by energy density functional theory (DFT) favor the halo-type neutron skin and can soon be confronted by experimental data. It is demonstrated that the halo-type density can serve as a good surrogate for the DFT density, and thus can be efficiently employed to probe nuclear deformities by using elliptic flow data in central collisions. We provide hereby a proof-of-principle venue to simultaneously determine the neutron skin type, thickness, and nuclear deformity.
Neutron skin thickness ($Delta r_{rm np}$) of nuclei and the inferred nuclear symmetry energy are of critical importance to nuclear physics and astrophysics. It is traditionally measured by nuclear processes with significant theoretical uncertainties
Particle production in ultrarelativistic heavy ion collisions depends on the details of the nucleon density distributions in the colliding nuclei. We demonstrate that the charged hadron multiplicity distributions in isobaric collisions at ultrarelati
We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) --- the induction of an electric current by the magnetic field in a parity-odd matter --- in the collision
We study the relation between neutron removal cross section ($sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the di
We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoprodu