ﻻ يوجد ملخص باللغة العربية
We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) --- the induction of an electric current by the magnetic field in a parity-odd matter --- in the collisions of isobaric nuclei, $^{96}_{44}$Ru + $^{96}_{44}$Ru and $^{96}_{40}$Zr + $^{96}_{40}$Zr, at $sqrt{s_{rm NN}}=200$ GeV. We show that such collisions provide an ideal tool to disentangle the CME signal from the possible elliptic-flow driven background effects. We also discuss some other effects that can be tested by using the isobaric collisions.
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents al
The isobaric collision experiment at RHIC provides the unique opportunity to detect the possible signal of Chiral Magnetic Effect (CME) in heavy ion collisions. The idea is to contrast the correlation observables of the two colliding systems that sup
We study chiral magnetic effect in collisions of AuAu, RuRu and ZrZr at s = 200GeV. The axial charge evolution is modeled with stochastic hydrodynamics and geometrical quantities are calculated with Monte Carlo Glauber model. By adjusting the relaxat
Isobaric $^{96}_{44}$Ru+$^{96}_{44}$Ru and $^{96}_{40}$Zr+$^{96}_{40}$Zr collisions at $sqrt{s_{_{NN}}}=200$ GeV have been conducted at the Relativistic Heavy Ion Collider to circumvent the large flow-induced background in searching for the chiral ma
We investigate the properties of electromagnetic fields in isobaric $_{44}^{96}textrm{Ru}+,_{44}^{96}textrm{Ru}$ and $_{40}^{96}textrm{Zr}+,_{40}^{96}textrm{Zr}$ collisions at $sqrt{s}$ = 200 GeV by using a multiphase transport model, with special em