ﻻ يوجد ملخص باللغة العربية
We show that the quantized Fock-Goncharov monodromy matrices satisfy the relations of the quantum special linear group $mathrm{SL}_n^q$. The proof employs a quantum version of the technology invented by Fock-Goncharov called snakes. This relationship between higher Teichmuller theory and quantum group theory is integral to the construction of a $mathrm{SL}_n$-quantum trace map for knots in thickened surfaces, developed in a companion paper (arXiv:2101.06817).
We generalize Bonahon and Wongs $mathrm{SL}_2(mathbb{C})$-quantum trace map to the setting of $mathrm{SL}_3(mathbb{C})$. More precisely, for each non-zero complex number $q$, we associate to every isotopy class of framed oriented links $K$ in a thick
For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Siko
We construct smooth concordance invariants of knots which take the form of piecewise linear maps from [0,1] to R, one for each n greater than or equal to 2. These invariants arise from sl(n) knot cohomology. We verify some properties which are analog
Let $p$ be a prime number. We prove that the $P=W$ conjecture for $mathrm{SL}_p$ is equivalent to the $P=W$ conjecture for $mathrm{GL}_p$. As a consequence, we verify the $P=W$ conjecture for genus 2 and $mathrm{SL}_p$. For the proof, we compute the
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka