ﻻ يوجد ملخص باللغة العربية
We construct smooth concordance invariants of knots which take the form of piecewise linear maps from [0,1] to R, one for each n greater than or equal to 2. These invariants arise from sl(n) knot cohomology. We verify some properties which are analogous to those of the invariant Upsilon (which arises from knot Floer homology), and some which differ. We make some explicit computations and give some topological applications. Further to this, we define a concordance invariant from equivariant sl(n) knot cohomology which subsumes many known concordance invariants arising from quantum knot cohomologies.
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle
We introduce shadow structures for singular knot theory. Precisely, we define emph{two} invariants of singular knots and links. First, we introduce a notion of action of a singquandle on a set to define a shadow counting invariant of singular links w
We modify the construction of knot Floer homology to produce a one-parameter family of homologies for knots in the three-sphere. These invariants can be used to give homomorphisms from the smooth concordance group to the integers, giving bounds on th
The ribbon cocycle invariant is defined by means of a partition function using ternary cohomology of self-distributive structures (TSD) and colorings of ribbon diagrams of a framed link, following the same paradigm introduced by Carter, Jelsovsky, Ka
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.