ﻻ يوجد ملخص باللغة العربية
Person image synthesis, e.g., pose transfer, is a challenging problem due to large variation and occlusion. Existing methods have difficulties predicting reasonable invisible regions and fail to decouple the shape and style of clothing, which limits their applications on person image editing. In this paper, we propose PISE, a novel two-stage generative model for Person Image Synthesis and Editing, which is able to generate realistic person images with desired poses, textures, or semantic layouts. For human pose transfer, we first synthesize a human parsing map aligned with the target pose to represent the shape of clothing by a parsing generator, and then generate the final image by an image generator. To decouple the shape and style of clothing, we propose joint global and local per-region encoding and normalization to predict the reasonable style of clothing for invisible regions. We also propose spatial-aware normalization to retain the spatial context relationship in the source image. The results of qualitative and quantitative experiments demonstrate the superiority of our model on human pose transfer. Besides, the results of texture transfer and region editing show that our model can be applied to person image editing.
Generating photorealistic images of human subjects in any unseen pose have crucial applications in generating a complete appearance model of the subject. However, from a computer vision perspective, this task becomes significantly challenging due to
We introduce a new image editing and synthesis framework, Stochastic Differential Editing (SDEdit), based on a recent generative model using stochastic differential equations (SDEs). Given an input image with user edits (e.g., hand-drawn color stroke
Generative adversarial networks (GANs) have enabled photorealistic image synthesis and editing. However, due to the high computational cost of large-scale generators (e.g., StyleGAN2), it usually takes seconds to see the results of a single edit on e
This paper presents a novel method to manipulate the visual appearance (pose and attribute) of a person image according to natural language descriptions. Our method can be boiled down to two stages: 1) text guided pose generation and 2) visual appear
We present a novel high-fidelity generative adversarial network (GAN) inversion framework that enables attribute editing with image-specific details well-preserved (e.g., background, appearance and illumination). We first formulate GAN inversion as a