ﻻ يوجد ملخص باللغة العربية
When interacting motile units self-organize into flocks, they realize one of the most robust ordered state found in nature. However, after twenty five years of intense research, the very mechanism controlling the ordering dynamics of both living and artificial flocks has remained unsettled. Here, combining active-colloid experiments, numerical simulations and analytical work, we explain how flocking liquids heal their spontaneous flows initially plagued by collections of topological defects to achieve long-ranged polar order even in two dimensions. We demonstrate that the self-similar ordering of flocking matter is ruled by a living network of domain walls linking all $pm 1$ vortices, and guiding their annihilation dynamics. Crucially, this singular orientational structure echoes the formation of extended density patterns in the shape of interconnected bow ties. We establish that this double structure emerges from the interplay between self-advection and density gradients dressing each $-1$ topological charges with four orientation walls. We then explain how active Magnus forces link all topological charges with extended domain walls, while elastic interactions drive their attraction along the resulting filamentous network of polarization singularities. Taken together our experimental, numerical and analytical results illuminate the suppression of all flow singularities, and the emergence of pristine unidirectional order in flocking matter.
We report flocking in the dry active granular matter of millimeter-sized two-step-tapered rods without an intervening medium. The system undergoes the flocking phase transition at a threshold area fraction ~ 0.12 having high orientational correlation
Controlling the phases of matter is a challenge that spans from condensed materials to biological systems. Here, by imposing a geometric boundary condition, we study controlled collective motion of Escherichia coli bacteria. A circular microwell isol
This article summarizes some of the open questions in the field of active matter that have emerged during Active20, a nine-week program held at the Kavli Institute for Theoretical Physics (KITP) in Spring 2020. The article does not provide a review o
Turbulence in driven stratified active matter is considered. The relevant parameters characterizing the problem are the Reynolds number Re and an active matter Richardson-like number,R. In the mixing limit,Re>>1, R<<1, we show that the standard Kolmo
How fast must an oriented collection of extensile swimmers swim to escape the instability of viscous active suspensions? We show that the answer lies in the dimensionless combination $R=rho v_0^2/2sigma_a$, where $rho$ is the suspension mass density,