ﻻ يوجد ملخص باللغة العربية
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control synthesis problem for single-agent systems under signal temporal logic tasks are, however, subject to a high computational complexity. Methods for multi-agent systems scale at least linearly with the number of agents and induce even higher computational burdens. We propose a computationally-efficient control strategy to solve the multi-agent control synthesis problem that results in a robust satisfaction of a set of signal temporal logic tasks. In particular, a decentralized feedback control law is proposed that is based on time-varying control barrier functions. The obtained control law is discontinuous and formal guarantees are provided by nonsmooth analysis. Simulations show the efficacy of the presented method.
This paper presents a control strategy based on a new notion of time-varying fixed-time convergent control barrier functions (TFCBFs) for a class of coupled multi-agent systems under signal temporal logic (STL) tasks. In this framework, each agent is
This paper presents a control strategy based on time-varying fixed-time convergent higher order control barrier functions for a class of leader-follower multi-agent systems under signal temporal logic (STL) tasks. Each agent is assigned a local STL t
A framework for the event-triggered control synthesis under signal temporal logic (STL) tasks is proposed. In our previous work, a continuous-time feedback control law was designed, using the prescribed performance control technique, to satisfy STL t
Motivated by the recent interest in cyber-physical and autonomous robotic systems, we study the problem of dynamically coupled multi-agent systems under a set of signal temporal logic tasks. In particular, the satisfaction of each of these signal tem
Temporal logics provide a formalism for expressing complex system specifications. A large body of literature has addressed the verification and the control synthesis problem for deterministic systems under such specifications. For stochastic systems