ﻻ يوجد ملخص باللغة العربية
The mobile communication system has transformed to be the fundamental infrastructure to support digital demands from all industry sectors, and 6G is envisioned to go far beyond the communication-only purpose. There is coming to a consensus that 6G will treat Artificial Intelligence (AI) as the cornerstone and has a potential capability to provide intelligence inclusion, which implies to enable the access of AI services at anytime and anywhere by anyone. Apparently, the intelligent inclusion vision produces far-reaching influence on the corresponding network architecture design in 6G and deserves a clean-slate rethink. In this article, we propose an end-to-end system architecture design scope for 6G, and talk about the necessity to incorporate an independent data plane and a novel intelligent plane with particular emphasis on end-to-end AI workflow orchestration, management and operation. We also highlight the advantages to provision converged connectivity and computing services at the network function plane. Benefiting from these approaches, we believe that 6G will turn to an everything as a service (XaaS) platform with significantly enhanced business merits.
In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing cost
With the global roll-out of the fifth generation (5G) networks, it is necessary to look beyond 5G and envision the sixth generation (6G) networks. The 6G networks are expected to have space-air-ground integrated networking, advanced network virtualiz
In this work, we develop a framework that jointly decides on the optimal location of wireless extenders and the channel configuration of extenders and access points (APs) in a Wireless Mesh Network (WMN). Typically, the rule-based approaches in the l
Next generation wireless networks are expected to support diverse vertical industries and offer countless emerging use cases. To satisfy stringent requirements of diversified services, network slicing is developed, which enables service-oriented reso
Network softwarization has revolutionized the architecture of cellular wireless networks. State-of-the-art container based virtual radio access networks (vRAN) provide enormous flexibility and reduced life cycle management costs, but they also come w