ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-X Design of Wireless Networks: Exploiting Artificial Intelligence and Guided Learning

84   0   0.0 ( 0 )
 نشر من قبل Haris Gacanin
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we develop a framework that jointly decides on the optimal location of wireless extenders and the channel configuration of extenders and access points (APs) in a Wireless Mesh Network (WMN). Typically, the rule-based approaches in the literature result in limited exploration while reinforcement learning based approaches result in slow convergence. Therefore, Artificial Intelligence (AI) is adopted to support network autonomy and to capture insights on system and environment evolution. We propose a Self-X (self-optimizing and self-learning) framework that encapsulates both environment and intelligent agent to reach optimal operation through sensing, perception, reasoning and learning in a truly autonomous fashion. The agent derives adequate knowledge from previous actions improving the quality of future decisions. Domain experience was provided to guide the agent while exploring and exploiting the set of possible actions in the environment. Thus, it guarantees a low-cost learning and achieves a near-optimal network configuration addressing the non-deterministic polynomial-time hardness (NP-hard) problem of joint channel assignment and location optimization in WMNs. Extensive simulations are run to validate its fast convergence, high throughput and resilience to dynamic interference conditions. We deploy the framework on off-the-shelf wireless devices to enable autonomous self-optimization and self-deployment, using APs and wireless extenders.



قيم البحث

اقرأ أيضاً

The mobile communication system has transformed to be the fundamental infrastructure to support digital demands from all industry sectors, and 6G is envisioned to go far beyond the communication-only purpose. There is coming to a consensus that 6G wi ll treat Artificial Intelligence (AI) as the cornerstone and has a potential capability to provide intelligence inclusion, which implies to enable the access of AI services at anytime and anywhere by anyone. Apparently, the intelligent inclusion vision produces far-reaching influence on the corresponding network architecture design in 6G and deserves a clean-slate rethink. In this article, we propose an end-to-end system architecture design scope for 6G, and talk about the necessity to incorporate an independent data plane and a novel intelligent plane with particular emphasis on end-to-end AI workflow orchestration, management and operation. We also highlight the advantages to provision converged connectivity and computing services at the network function plane. Benefiting from these approaches, we believe that 6G will turn to an everything as a service (XaaS) platform with significantly enhanced business merits.
The explosive increase in number of smart devices hosting sophisticated applications is rapidly affecting the landscape of information communication technology industry. Mobile subscriptions, expected to reach 8.9 billion by 2022, would drastically i ncrease the demand of extra capacity with aggregate throughput anticipated to be enhanced by a factor of 1000. In an already crowded radio spectrum, it becomes increasingly difficult to meet ever growing application demands of wireless bandwidth. It has been shown that the allocated spectrum is seldom utilized by the primary users and hence contains spectrum holes that may be exploited by the unlicensed users for their communication. As we enter the Internet Of Things (IoT) era in which appliances of common use will become smart digital devices with rigid performance requirements (such as low latency, energy efficiency, etc.), current networks face the vexing problem of how to create sufficient capacity for such applications. The fifth generation of cellular networks (5G) envisioned to address these challenges are thus required to incorporate cognition and intelligence to resolve the aforementioned issues.
276 - Bo Yang , Xuelin Cao , Kai Xiong 2020
In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing cost s will be introduced to the AVs for processing the tasks with the deployed machine learning (ML) model, while the inference accuracy may not be guaranteed. In this context, the advent of edge intelligence (EI) and sixth-generation (6G) wireless networking are expected to pave the way to more reliable and safer autonomous driving by providing multi-access edge computing (MEC) together with ML to AVs in close proximity. To realize this goal, we propose a two-tier EI-empowered autonomous driving framework. In the autonomous-vehicles tier, the autonomous vehicles are deployed with the shallow layers by splitting the trained deep neural network model. In the edge-intelligence tier, an edge server is implemented with the remaining layers (also deep layers) and an appropriately trained multi-task learning (MTL) model. In particular, obtaining the optimal offloading strategy (including the binary offloading decision and the computational resources allocation) can be formulated as a mixed-integer nonlinear programming (MINLP) problem, which is solved via MTL in near-real-time with high accuracy. On another note, an edge-vehicle joint inference is proposed through neural network segmentation to achieve efficient online inference with data privacy-preserving and less communication delay. Experiments demonstrate the effectiveness of the proposed framework, and open research topics are finally listed.
Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multipl e access (NOMA) and mobile edge computing (MEC) techniques to service terrestrial mobile users (MUs). The proposed framework enables the terrestrial MUs to offload their computational tasks simultaneously, intelligently, and flexibly, thus enhancing their connectivity as well as reducing their transmission latency and their energy consumption. To this end, the fundamentals of this framework are first introduced. Then, a number of communication and AI techniques are proposed to improve the quality of experiences of terrestrial MUs. To this end, federated learning and reinforcement learning are introduced for intelligent task offloading and computing resource allocation. For each learning technique, motivations, challenges, and representative results are introduced. Finally, several key technical challenges and open research issues of the proposed framework are summarized.
65 - Ye Ouyang 2021
It has been an exciting journey since the mobile communications and artificial intelligence were conceived 37 years and 64 years ago. While both fields evolved independently and profoundly changed communications and computing industries, the rapid co nvergence of 5G and deep learning is beginning to significantly transform the core communication infrastructure, network management and vertical applications. The paper first outlines the individual roadmaps of mobile communications and artificial intelligence in the early stage, with a concentration to review the era from 3G to 5G when AI and mobile communications started to converge. With regard to telecommunications artificial intelligence, the paper further introduces in detail the progress of artificial intelligence in the ecosystem of mobile communications. The paper then summarizes the classifications of AI in telecom ecosystems along with its evolution paths specified by various international telecommunications standardization bodies. Towards the next decade, the paper forecasts the prospective roadmap of telecommunications artificial intelligence. In line with 3GPP and ITU-R timeline of 5G & 6G, the paper further explores the network intelligence following 3GPP and ORAN routes respectively, experience and intention driven network management and operation, network AI signalling system, intelligent middle-office based BSS, intelligent customer experience management and policy control driven by BSS and OSS convergence, evolution from SLA to ELA, and intelligent private network for verticals. The paper is concluded with the vision that AI will reshape the future B5G or 6G landscape and we need pivot our R&D, standardizations, and ecosystem to fully take the unprecedented opportunities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا