ﻻ يوجد ملخص باللغة العربية
In this work, we develop a framework that jointly decides on the optimal location of wireless extenders and the channel configuration of extenders and access points (APs) in a Wireless Mesh Network (WMN). Typically, the rule-based approaches in the literature result in limited exploration while reinforcement learning based approaches result in slow convergence. Therefore, Artificial Intelligence (AI) is adopted to support network autonomy and to capture insights on system and environment evolution. We propose a Self-X (self-optimizing and self-learning) framework that encapsulates both environment and intelligent agent to reach optimal operation through sensing, perception, reasoning and learning in a truly autonomous fashion. The agent derives adequate knowledge from previous actions improving the quality of future decisions. Domain experience was provided to guide the agent while exploring and exploiting the set of possible actions in the environment. Thus, it guarantees a low-cost learning and achieves a near-optimal network configuration addressing the non-deterministic polynomial-time hardness (NP-hard) problem of joint channel assignment and location optimization in WMNs. Extensive simulations are run to validate its fast convergence, high throughput and resilience to dynamic interference conditions. We deploy the framework on off-the-shelf wireless devices to enable autonomous self-optimization and self-deployment, using APs and wireless extenders.
The mobile communication system has transformed to be the fundamental infrastructure to support digital demands from all industry sectors, and 6G is envisioned to go far beyond the communication-only purpose. There is coming to a consensus that 6G wi
The explosive increase in number of smart devices hosting sophisticated applications is rapidly affecting the landscape of information communication technology industry. Mobile subscriptions, expected to reach 8.9 billion by 2022, would drastically i
In a level-5 autonomous driving system, the autonomous driving vehicles (AVs) are expected to sense the surroundings via analyzing a large amount of data captured by a variety of onboard sensors in near-real-time. As a result, enormous computing cost
Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multipl
It has been an exciting journey since the mobile communications and artificial intelligence were conceived 37 years and 64 years ago. While both fields evolved independently and profoundly changed communications and computing industries, the rapid co