ﻻ يوجد ملخص باللغة العربية
In applications of imprecise probability, analysts must compute lower (or upper) expectations, defined as the infimum of an expectation over a set of parameter values. Monte Carlo methods consistently approximate expectations at fixed parameter values, but can be costly to implement in grid search to locate minima over large subsets of the parameter space. We investigate the use of stochastic iterative root-finding methods for efficiently computing lower expectations. In two examples we illustrate the use of various stochastic approximation methods, and demonstrate their superior performance in comparison to grid search.
We generalize standard credal set models for imprecise probabilities to include higher order credal sets -- confidences about confidences. In doing so, we specify how an agents higher order confidences (credal sets) update upon observing an event. Ou
Memristor based neural networks have great potentials in on-chip neuromorphic computing systems due to the fast computation and low-energy consumption. However, the imprecise properties of existing memristor devices generally result in catastrophic f
The generalized labeled multi-Bernoulli (GLMB) is a family of tractable models that alleviates the limitations of the Poisson family in dynamic Bayesian inference of point processes. In this paper, we derive closed form expressions for the void proba
It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC. These methods use a noisy estimate of the gradient of the log posterior, whic
In this article, we present a new R package fc that provides a streamlined, standard evaluation-based approach to function composition. Using fc, a sequence of functions can be composed together such that returned objects from composed functions are