ﻻ يوجد ملخص باللغة العربية
We discuss the $SU(5)$ grand unified extension of flavour models with multiple modular symmetries. The proposed model involves two modular $S_4$ groups, one acting in the charged fermion sector, associated with a modulus field value $tau_T$ with residual $Z_3^T$ symmetry, and one acting in the right-handed neutrino sector, associated with another modulus field value $tau_{SU}$ with residual $Z_2^{SU}$ symmetry. Quark and lepton mass hierarchies are naturally generated with the help of weightons, which are SM singlet fields, where their non-zero modular weights play the role of Froggatt-Nielsen charges. The model predicts TM$_1$ lepton mixing, and neutrinoless double beta decay at rates close to the sensitivity of current and future experiments, for both normal and inverted orderings, with suppressed corrections from charged lepton mixing due to the triangular form of its Yukawa matrix.
We present a flavor model with the $S_3$ modular invariance in the framework of SU(5) GUT. The $S_3$ modular forms of weights $2$ and $4$ give the quark and lepton mass matrices with a common complex parameter, the modulus $tau$. The GUT relation of
We minimally extend the Standard Model field content by adding new vector-like fermions at the TeV scale to allow gauge coupling unification at a realistic scale. We embed the model into a $SU(5)$ grand unified theory that is asymptotically safe and
We study the feasibility of realizing supersymmetric new inflation model, introduced by Senoguz and Shafi in [1], for $SU(5)$ and flipped $SU(5)$ models of grand unified theories (GUTs). This realization requires an additional $U(1)_R times Z_{n}$ sy
We propose a model with $A_4$ flavor symmetry for leptons and quarks in the framework of supersymmetric SU(5) grand unified theory (GUT). The running masses of quarks and charged leptons at GUT scale ($sim 10^{16}$ GeV) are realized by the adjoint 24
Supersymmetric SU(5) GUT augmented with anomaly free U(1)_F flavor symmetry is presented. Very economical field content and U(1)_F charge assignment are obtained by specific construction. In particular, three families of 10+5* chiral matter, along th