ﻻ يوجد ملخص باللغة العربية
The topology of pure Bi is controversial because of its very small ($sim$10 meV) band gap. Here we perform high-resolution angle-resolved photoelectron spectroscopy measurements systematically on 14$-$202 bilayers Bi films. Using high-quality films, we succeed in observing quantized bulk bands with energy separations down to $sim$10 meV. Detailed analyses on the phase shift of the confined wave functions precisely determine the surface and bulk electronic structures, which unambiguously show nontrivial topology. The present results not only prove the fundamental property of Bi but also introduce a capability of the quantum-confinement approach.
The mathematical field of topology has become a framework to describe the low-energy electronic structure of crystalline solids. A typical feature of a bulk insulating three-dimensional topological crystal are conducting two-dimensional surface state
Using high-resolution angle-resolved photoemission spectroscopy, the electronic structure near the Fermi level and the topological property of the Bi(111) films grown on the Bi$_2$Te$_3$(111) substrate were studied. Very different from the bulk Bi, w
Bismuth has been the key element in the discovery and development of topological insulator materials. Previous theoretical studies indicated that Bi is topologically trivial and it can transform into the topological phase by alloying with Sb. However
The interface between a solid and vacuum can become electronically distinct from the bulk. This feature, encountered in the case of quantum Hall effect, has a manifestation in insulators with topologically protected metallic surface states. Non-trivi
We report the growth of self-assembled Bi2Se3 quantum dots (QDs) by molecular beam epitaxy on GaAs substrates using the droplet epitaxy technique. The QD formation occurs after anneal of Bismuth droplets under Selenium flux. Characterization by atomi