ﻻ يوجد ملخص باللغة العربية
People suffering from hearing impairment often have difficulties participating in conversations in so-called `cocktail party scenarios with multiple people talking simultaneously. Although advanced algorithms exist to suppress background noise in these situations, a hearing device also needs information on which of these speakers the user actually aims to attend to. The correct (attended) speaker can then be enhanced using this information, and all other speakers can be treated as background noise. Recent neuroscientific advances have shown that it is possible to determine the focus of auditory attention from non-invasive neurorecording techniques, such as electroencephalography (EEG). Based on these new insights, a multitude of auditory attention decoding (AAD) algorithms have been proposed, which could, combined with the appropriate speaker separation algorithms and miniaturized EEG sensor devices, lead to so-called neuro-steered hearing devices. In this paper, we provide a broad review and a statistically grounded comparative study of EEG-based AAD algorithms and address the main signal processing challenges in this field.
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD
Auditory attention decoding (AAD) algorithms decode the auditory attention from electroencephalography (EEG) signals that capture the listeners neural activity. Such AAD methods are believed to be an important ingredient towards so-called neuro-steer
Recent behavioral and electroencephalograph (EEG) studies have defined ways that auditory spatial attention can be allocated over large regions of space. As with most experimental studies, behavior EEG was averaged over 10s of minutes because identif
At present, people usually use some methods based on convolutional neural networks (CNNs) for Electroencephalograph (EEG) decoding. However, CNNs have limitations in perceiving global dependencies, which is not adequate for common EEG paradigms with
We present the implementation of seizure detection algorithms based on a minimal number of EEG channels on a parallel ultra-low-power embedded platform. The analyses are based on the CHB-MIT dataset, and include explorations of different classificati