ﻻ يوجد ملخص باللغة العربية
The Hubble constant ($H_0$) tension between Type Ia Supernovae (SNe Ia) and Planck measurements ranges from 4 to 6 $sigma$. To investigate this tension, we estimate $H_{0}$ in the $Lambda$CDM and $w_{0}w_{a}$CDM models by dividing the Pantheon sample, the largest compilation of SNe Ia, into 3, 4, 20 and 40 bins. We fit the extracted $H_{0}$ values with a function mimicking the redshift evolution: $g(z)={H_0}(z)=tilde{H}_0/(1+z)^alpha$, where $alpha$ indicates an evolutionary parameter and $tilde{H}_0=H_0$ at $z=0$. We set the absolute magnitude of SNe Ia so that $H_0=73.5,, textrm{km s}^{-1},textrm{Mpc}^{-1}$, and we fix fiducial values for $Omega_{0m}^{Lambda CDM}=0.298$ and $Omega_{0m}^{w_{0}w_{a}CDM}=0.308$. We find that $H_0$ evolves with redshift, showing a slowly decreasing trend, with $alpha$ coefficients consistent with zero only from 1.2 to 2.0 $sigma$. Although the $alpha$ coefficients are compatible with 0 in 3 $sigma$, this however may affect cosmological results. We measure locally a variation of $H_0(z=0)-H_0(z=1)=0.4, textrm{km s}^{-1},textrm{Mpc}^{-1}$ in 3 and 4 bins. Extrapolating ${H_0}(z)$ to $z=1100$, the redshift of the last scattering surface, we obtain values of $H_0$ compatible in 1 $sigma$ with Planck measurements independently of cosmological models and number of bins we investigated. Thus, we have reduced the $H_0$ tension from $54%$ to $72%$ for the $Lambda$CDM and $w_{0}w_{a}$CDM models, respectively. If the decreasing trend of $H_0(z)$ is real, it could be due to astrophysical selection effects or to modified gravity.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f
The aim of this work is to use gamma-ray burst supernovae (GRB-SNe) as cosmological probes to measure the Hubble constant, $H_0$, in the local Universe. In the context of the Expanding Photosphere Method (EPM), I use empirically derived dilution fact
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assu
Motivated by the large observed diversity in the properties of extra-galactic extinction by dust, we re-analyse the Cepheid calibration used to infer the local value of the Hubble constant, $H_0$, from Type Ia supernovae. Unlike the SH0ES team, we do
The $Lambda$ Cold Dark Matter model ($Lambda$CDM) represents the current standard model in cosmology. Within this, there is a tension between the value of the Hubble constant, $H_0$, inferred from local distance indicators and the angular scale of fl