ﻻ يوجد ملخص باللغة العربية
In this technical report, we evaluate the adversarial robustness of a very recent method called Geometry-aware Instance-reweighted Adversarial Training[7]. GAIRAT reports state-of-the-art results on defenses to adversarial attacks on the CIFAR-10 dataset. In fact, we find that a network trained with this method, while showing an improvement over regular adversarial training (AT), is biasing the model towards certain samples by re-scaling the loss. Indeed, this leads the model to be susceptible to attacks that scale the logits. The original model shows an accuracy of 59% under AutoAttack - when trained with additional data with pseudo-labels. We provide an analysis that shows the opposite. In particular, we craft a PGD attack multiplying the logits by a positive scalar that decreases the GAIRAT accuracy from from 55% to 44%, when trained solely on CIFAR-10. In this report, we rigorously evaluate the model and provide insights into the reasons behind the vulnerability of GAIRAT to this adversarial attack. The code to reproduce our evaluation is made available at https://github.com/giuxhub/GAIRAT-LSA
In adversarial machine learning, there was a common belief that robustness and accuracy hurt each other. The belief was challenged by recent studies where we can maintain the robustness and improve the accuracy. However, the other direction, whether
We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $mathsf{OPT}_{p,r}$ as the best robust classification error achieved by a halfspace that is robust to per
Todays state-of-the-art image classifiers fail to correctly classify carefully manipulated adversarial images. In this work, we develop a new, localized adversarial attack that generates adversarial examples by imperceptibly altering the backgrounds
While deep neural networks have achieved remarkable success in various computer vision tasks, they often fail to generalize to new domains and subtle variations of input images. Several defenses have been proposed to improve the robustness against th
Adversarial training is one of the most effective approaches defending against adversarial examples for deep learning models. Unlike other defense strategies, adversarial training aims to promote the robustness of models intrinsically. During the las