ﻻ يوجد ملخص باللغة العربية
A fraction of the XMM-Newton/EPIC FOV is obscured by the dysfunctional (i.e. bad) pixels. The fraction varies between different EPIC instruments in a given observation. These complications affect the analysis of extended X-ray sources observed with XMM-Newton/EPIC and the consequent scientific interpretation of the results. For example, the accuracy of the widely used cosmological probe of the gas mass of clusters of galaxies depends on the accuracy of the procedure of removing the obscuration effect from the measured flux. The Science Analysis Software (SAS) includes an option for recovering the lost fraction of the flux measured by a primary instrument by utilising a supplementary image of the same source. The correction may be accurate if the supplementary image is minimally obscured at the locations of the bad pixels of the primary instrument. This can be achieved e.g. by using the observation-based MOS2 image for correcting the pn flux, or by using a synthetic model image. By utilising a sample of 27 galaxy cluster observations we evaluated the accuracy of the recovery method based on observed images, as implemented in SAS 18.0.0. We found that the accuracy of the recovered total flux in the 0.5-7.0 keV band in the full geometric area within the central r = 6 arcmin is better than 0.1% on average while in some individual cases the recovered flux may be uncertain by ~1%.
ASTRONIRCAM is an infrared camera-spectrograph installed at the 2.5-meter telescope of the CMO SAI. The instrument is equipped with the HAWAII-2RG array. A bad pixels classification of the ASTRONIRCAM detector is proposed. The classification is based
We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field
We use XMM-Newton blank-sky and closed-cover background data to explore the background subtraction methods for large extended sources filling the EPIC field of view, such as nearby galaxy clusters, for which local background estimation is difficult.
A diverse array of science goals require accurate flux calibration of observations with the Atacama Large Millimeter/Submillimeter array (ALMA), however, this goal remains challenging due to the stochastic time-variability of the ``grid quasars ALMA
We aim to examine the relative cross-calibration accuracy of the on-axis effective areas of the XMM-Newton EPIC pn and MOS instruments. Spectra from a sample of 46 bright, high-count, non-piled-up isolated on-axis point sources are stacked together,