ترغب بنشر مسار تعليمي؟ اضغط هنا

Fourier optics with linearly tapered waveguides: light trapping and focusing

76   0   0.0 ( 0 )
 نشر من قبل Mahmoud Gaafar Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An optical pulse asymptotically reaching zero group velocity in tapered waveguides can ultimately stop at a certain position in the taper accompanied by a strong spatial compression. This phenomenon can be also observed in spatio-temporal systems where the pulse velocity asymptotically reaches the velocity of a tapered front. The first system is well known from tapered plasmonic waveguides where adiabatic nano-focusing of light is observed. Its counterpart in the spatio-temporal system is the optical push broom effect where a nonlinear front collects and compresses the signal. Here, we use the slowly-varying envelope approximation to describe such systems. We demonstrate an analytical solution for the linear taper and the piecewise linear dispersion and show that the solution in this case resembles that of an optical lens in paraxial approximation. In particular, the spatial distribution of the focused light represents the Fourier transform of the signal at the input.



قيم البحث

اقرأ أيضاً

We demonstrate a wide range of novel functions in integrated, CMOS compatible, devices. This platform has promise for telecommunications and on-chip WDM optical interconnects for computing.
Optical trapping describes the interaction between light and matter to manipulate micro-objects through momentum transfer. In the case of 3D trapping with a single beam, this is termed optical tweezers. Optical tweezers are a powerful and non-invasiv e tool for manipulating small objects, which have become indispensable in many fields, including physics, biology, soft condensed matter, amongst others. In the early days, optical trapping were typically used with a single Gaussian beam. In recent years, we have witnessed the rapid progress in the use of structured light beams with customized phase, amplitude and polarization in optical trapping. Unusual beam properties, such as phase singularities on-axis, propagation invariant nature, have opened up novel capabilities to the study of micromanipulation in liquid, air and vacuum. In this review, we summarize the recent advances in the field of optical trapping using structured light beams.
The smallest possible focus is achieved when the focused wave front is the time reversed copy of the light wave packet emitted from a point in space (S. Quabis et al., Opt. Commun. 179 (2000) 1-7). The best physical implementation of such a pointlike sub-wavelength emitter is a single atom performing an electric dipole transition. In a former paper (N. Lindlein et al., Laser Phys. 17 (2007) 927-934) we showed how such a dipole-like radiant intensity distribution can be produced with the help of a deep parabolic mirror and appropriate shaping of the intensity of the radially polarized incident plane wave. Such a dipole wave only mimics the far field of a linear dipole and not the near field components. Therefore, in this paper, the electric energy density in the focus of a parabolic mirror is calculated using the Debye integral method. Additionally, a comparison with conventional nearly 4pi illumination using two high numerical aperture objectives is performed. The influence of aberrations due to a misalignment of the incident plane wave is discussed.
We demonstrate a silicon nitride trench waveguide deposited with bowtie antennas for plasmonic enhanced optical trapping. The sub-micron silicon nitride trench waveguides were fabricated with conventional optical lithography in a low cost manner. The waveguides embrace not only low propagation loss and high nonlinearity, but also the inborn merits of combining micro-fluidic channel and waveguide together. Analyte contained in the trapezoidal trench channel can interact with the evanescent field from the waveguide beneath. The evanescent field can be further enhanced by plasmonic nanostructures. With the help of gold nano bowtie antennas, the studied waveguide shows outstanding trapping capability on 10 nm polystyrene nanoparticles. We show that the bowtie antennas can lead to 60-fold enhancement of electric field in the antenna gap. The optical trapping force on a nanoparticle is boosted by three orders of magnitude. A strong tendency shows the nanoparticle is likely to move to the high field strength region, exhibiting the trapping capability of the antenna. Gradient force in vertical direction is calculation by using a point-like dipole assumption, and the analytical solution matches the full-wave simulation well. The investigation indicates that nanostructure patterned silicon nitride trench waveguide is suitable for optical trapping and nanoparticle sensing applications.
Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that res ults from the variation of the waveguide width with the propagation distance. For the generation of optimal SC, a genetic algorithm has been used to find the best dispersion map. This allows for the generation of highly coherent supercontinuums that span over 1.14 octaves from 1300 nm to 2860 nm and 1.25 octaves from 1200 nm to 2870 nm at -20 dB level for the tapered and DM waveguides respectively, for a 2 $mu$m, 200 fs and 6.4 pJ input pulse. The comparison of these two structures with the usually considered optimal fixed width waveguide shows that the SC is broader and flatter in the more elaborated DM waveguide, while the high coherence is ensured by the varying dispersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا