ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of ultra broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides

76   0   0.0 ( 0 )
 نشر من قبل Charles Ciret
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that results from the variation of the waveguide width with the propagation distance. For the generation of optimal SC, a genetic algorithm has been used to find the best dispersion map. This allows for the generation of highly coherent supercontinuums that span over 1.14 octaves from 1300 nm to 2860 nm and 1.25 octaves from 1200 nm to 2870 nm at -20 dB level for the tapered and DM waveguides respectively, for a 2 $mu$m, 200 fs and 6.4 pJ input pulse. The comparison of these two structures with the usually considered optimal fixed width waveguide shows that the SC is broader and flatter in the more elaborated DM waveguide, while the high coherence is ensured by the varying dispersion.



قيم البحث

اقرأ أيضاً

Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that res ults from the variation of the waveguide width with the propagation distance. For the generation of optimal SC, a genetic algorithm has been used to find the best dispersion map. This allows for the generation of highly coherent supercontinuums that span over 1.14 octaves from 1300 nm to 2860 nm and 1.25 octaves from 1200 nm to 2870 nm at -20 dB level for the tapered and DM waveguides respectively, for a 2 $mu$m, 200 fs and 6.4 pJ input pulse. The comparison of these two structures with the usually considered optimal fixed width waveguide shows that the SC is broader and flatter in the more elaborated DM waveguide, while the high coherence is ensured by the varying dispersion.
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili zed to selectively enhance supercontinuum. As much as 16 dB signal enhancement in the telecom window and 100 nm of wavelength extension is achieved with a cascaded waveguide, compared to a fixed dispersion waveguide. Waveguide tapering, in particular with increasing width, is determined to have a flatter and more coherent supercontinuum than a fixed dispersion waveguide when longer input pulses are used. Furthermore, due to the strong birefringence of an asymmetric silicon waveguide the supercontinuum signal is broadened by pumping simultaneously with both quasitransverse electric (TE) and quasi-transverse magnetic (TM) mode in the anomalous dispersion regime. Thus, by controlling the dispersion for the two modes selective signal generation is obtained. Such waveguides offer several advantages over optical fiber as the variation in dispersion can be controlled with greater flexibility in an integrated platform. This work paves the way forward for various applications in fields ranging from medicine to telecom where specific wavelength windows need to be targeted.
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The D M map is adopted in the form of alternating segments with anomalous and normal group-velocity dispersion. Previously, temporal DM solitons were studied in detail in single-mode fibers, and some solutions for 2D spatiotemporal light bullets, stabilized by DM, were found in the model of a planar waveguide. By means of numerical methods, we demonstrate that stability of the 3D spatiotemporal solitons is determined by the usual DM-strength parameter, $S$: they are quasi-stable at $ S<S_{0}approx 0.93$, and completely stable at $S>S_{0}$. Stable vortex solitons are constructed too. We also consider collisions between the 3D solitons, in both axial and transverse directions. The interactions are quasi-elastic, including periodic collisions between solitons which perform shuttle motion in the transverse plane.
Supercontinuum generation in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations o f the waveguide structure provides a useful mechanism to control the evolution of ultrafast pulses and the supercontinuum spectrum. We experimentally demonstrate quasi-phase-matched supercontinuum to the TE20 and TE00 waveguide modes, which enhances the intensity of the SCG in specific spectral regions by as much as 20 dB. We utilize higher-order quasi-phase-matching (up to the 16th order) to enhance the intensity in numerous locations across the spectrum. Quasi-phase-matching adds a unique dimension to the design-space for SCG waveguides, allowing the spectrum to be engineered for specific applications.
We demonstrate a fully coherent supercontinuum spectrum spanning 500 nm from a silicon-on-insulator photonic wire waveguide pumped at 1575 nm wavelength. An excellent agreement with numerical simulations is reported. The simulations also show that a high level of two-photon absorption can essentially enforce the coherence of the spectral broadening process irrespective of the pump pulse duration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا