ترغب بنشر مسار تعليمي؟ اضغط هنا

Factor-augmented Bayesian treatment effects models for panel outcomes

72   0   0.0 ( 0 )
 نشر من قبل Helga Wagner Dr.
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new, flexible model for inference of the effect of a binary treatment on a continuous outcome observed over subsequent time periods. The model allows to seperate association due to endogeneity of treatment selection from additional longitudinal association of the outcomes and hence unbiased estimation of dynamic treatment effects. We investigate the performance of the proposed method on simulated data and employ it to reanalyse data on the longitudinal effects of a long maternity leave on mothers earnings after their return to the labour market.



قيم البحث

اقرأ أيضاً

179 - Takuya Ishihara 2020
In this study, we develop a novel estimation method of the quantile treatment effects (QTE) under the rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumpti ons and propose a parametric estimation based on the minimum distance method. However, the minimum distance estimation using this process is computationally demanding when the dimensionality of covariates is large. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance method. We then show consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Last, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and of TV watching on child cognitive development.
Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which includ e logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.
We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspiration from the two-way fixed effect model as a special case of the linear factor model, where a simple difference-in-differences transformation identifies the effect. We show that analogous, albeit more complex, transformations exist in the more general linear factor model, providing a new means to identify the effect in that model. In fact many such transformations exist, called bridge functions, all identifying the same causal effect estimand. This poses a unique challenge for estimation and inference, which we solve by targeting the minimal bridge function using a regularized estimation approach. We prove that our resulting average causal effect estimator is root-N consistent and asymptotically normal, and we provide asymptotically valid confidence intervals. Finally, we provide extensions for the case of a linear factor model with time-varying unmeasured confounders.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi gned or time is an instrument. Partial identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of $T$, the number of time periods, is shown by deriving shrinkage rates for the identified set as $T$ grows. We also consider semiparametric, discrete-choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally-convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.
105 - Jaejoon Lee , Jaeyong Lee 2020
Most of previous works and applications of Bayesian factor model have assumed the normal likelihood regardless of its validity. We propose a Bayesian factor model for heavy-tailed high-dimensional data based on multivariate Student-$t$ likelihood to obtain better covariance estimation. We use multiplicative gamma process shrinkage prior and factor number adaptation scheme proposed in Bhattacharya & Dunson [Biometrika (2011) 291-306]. Since a naive Gibbs sampler for the proposed model suffers from slow mixing, we propose a Markov Chain Monte Carlo algorithm where fast mixing of Hamiltonian Monte Carlo is exploited for some parameters in proposed model. Simulation results illustrate the gain in performance of covariance estimation for heavy-tailed high-dimensional data. We also provide a theoretical result that the posterior of the proposed model is weakly consistent under reasonable conditions. We conclude the paper with the application of proposed factor model on breast cancer metastasis prediction given DNA signature data of cancer cell.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا