ﻻ يوجد ملخص باللغة العربية
In this paper, we review the state of the art of mode selective, integrated sum-frequency generation devices tailored for quantum optical technologies. We explore benchmarks to asses their performance and discuss the current limitations of these devices, outlining possible strategies to overcome them. Finally, we present the fabrication of a new, improved device and its characterization. We analyse the fabrication quality of this device and discuss the next steps towards improved non-linear devices for quantum applications.
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper
This review covers recent theoretical and experimental efforts to extend the application of the continuous-variable quantum technology of light beyond Gaussian quantum states, such as coherent and squeezed states, into the domain of non-Gaussian stat
A general formalism is given in quantum optics within a ring cavity, in which a non-linear material is stored. The method is Feynman graphical one, expressing the transition amplitude or S-matrix in terms of propagators and vertices. The propagator i
In this paper, we show how the non-holonomic control technique can be employed to build completely controlled quantum devices. Examples of such controlled structures are provided.
We show that a non-Hermitian zero mode can exhibit an unusual behavior at the transition between extended and localized regimes: it displays a linearly decreasing amplitude as a function of space in a weakly coupled non-Hermitian reservoir. Through t