ﻻ يوجد ملخص باللغة العربية
This review covers recent theoretical and experimental efforts to extend the application of the continuous-variable quantum technology of light beyond Gaussian quantum states, such as coherent and squeezed states, into the domain of non-Gaussian states with negative Wigner functions. Starting with basic Gaussian nonclassicality associated with single- and two-mode vacuum states produced by means of parametric down-conversion and applying a set of standard tools, such as linear interferometry, coherent state injection, and conditional homodyne and photon number measurements, one can implement a large variety of optical states and processes that are relevant in fundamental quantum physics as well as quantum optical information processing. We present a systematic review of these methods, paying attention to both fundamental and practical aspects of their implementation, as well as a comprehensive overview of the results achieved therewith.
Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuo
We examine the behavior of non-Gaussian states of light under the action of probabilistic noiseless amplification and attenuation. Surprisingly, we find that the mean field amplitude may decrease in the process of noiseless amplification -- or increa
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process
We introduce and experimentally explore the concept of quantum non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quant
We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum st