ترغب بنشر مسار تعليمي؟ اضغط هنا

Production and applications of non-Gaussian quantum states of light

98   0   0.0 ( 0 )
 نشر من قبل Alexander I. Lvovsky
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This review covers recent theoretical and experimental efforts to extend the application of the continuous-variable quantum technology of light beyond Gaussian quantum states, such as coherent and squeezed states, into the domain of non-Gaussian states with negative Wigner functions. Starting with basic Gaussian nonclassicality associated with single- and two-mode vacuum states produced by means of parametric down-conversion and applying a set of standard tools, such as linear interferometry, coherent state injection, and conditional homodyne and photon number measurements, one can implement a large variety of optical states and processes that are relevant in fundamental quantum physics as well as quantum optical information processing. We present a systematic review of these methods, paying attention to both fundamental and practical aspects of their implementation, as well as a comprehensive overview of the results achieved therewith.



قيم البحث

اقرأ أيضاً

Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuo us-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfillment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.
We examine the behavior of non-Gaussian states of light under the action of probabilistic noiseless amplification and attenuation. Surprisingly, we find that the mean field amplitude may decrease in the process of noiseless amplification -- or increa se in the process of noiseless attenuation, a counterintuitive effect that Gaussian states cannot exhibit. This striking phenomenon could be tested with experimentally accessible non-Gaussian states, such as single-photon added coherent states. We propose an experimental scheme, which is robust with respect to the major experimental imperfections such as inefficient single-photon detection and imperfect photon addition. In particular, we argue that the observation of mean field amplification by noiseless attenuation should be feasible with current technology.
In continuous-variable quantum information, non-Gaussian entangled states that are obtained from Gaussian entangled states via photon subtraction are known to contain more entanglement. This makes them better resources for quantum information process ing protocols, such as, quantum teleportation. We discuss the teleportation of non-Gaussian, non-classical Schrodinger-cat states of light using two-mode squeezed vacuum light that is made non-Gaussian via subtraction of a photon from each of the two modes. We consider the experimentally realizable cat states produced by subtracting a photon from the single-mode squeezed vacuum state. We discuss two figures of merit for the teleportation process, a) the fidelity, and b) the maximum negativity of the Wigner function at the output. We elucidate how the non-Gaussian entangled resource lowers the requirements on the amount of squeezing necessary to achieve any given fidelity of teleportation, or to achieve negative values of the Wigner function at the output.
We introduce and experimentally explore the concept of quantum non-Gaussian depth of single-photon states with a positive Wigner function. The depth measures the robustness of a single-photon state against optical losses. The directly witnessed quant um non-Gaussianity withstands significant attenuation, exhibiting a depth of 18 dB, while the nonclassicality remains unchanged. Quantum non-Gaussian depth is an experimentally approachable quantity that is much more robust than the negativity of the Wigner function. Furthermore, we use it to reveal significant differences between otherwise strongly nonclassical single-photon sources.
We analyze the statistics of photons originating from amplified spontaneous emission generated by a quantum dot superluminescent diode. Experimentally detectable emission properties are taken into account by parametrizing the corresponding quantum st ate as a multi-mode phase-randomized Gaussian density operator. The validity of this model is proven in two subsequent experiments using fast two-photon-absorption detection observing second order equal-time- as well as second order fully time-resolved intensity correlations on femtosecond timescales. In the first experiment, we study the photon statistics when the number of contributing longitudinal modes is systematically reduced by applying well-controlled optical feedback. In a second experiment, we add coherent light from a single-mode laserdiode to quantum dot superluminescent diode broadband radiation. Tuning the power ratio, we realize tailored second order correlations ranging from Gaussian to Poissonian statistics. Both experiments are very well matched by theory, thus giving first insights into quantum properties of radiation from quantum dot superluminescent diodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا