ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection and Rectification of Arbitrary Shaped Scene Texts by using Text Keypoints and Links

209   0   0.0 ( 0 )
 نشر من قبل Chuhui Xue
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Detection and recognition of scene texts of arbitrary shapes remain a grand challenge due to the super-rich text shape variation in text line orientations, lengths, curvatures, etc. This paper presents a mask-guided multi-task network that detects and rectifies scene texts of arbitrary shapes reliably. Three types of keypoints are detected which specify the centre line and so the shape of text instances accurately. In addition, four types of keypoint links are detected of which the horizontal links associate the detected keypoints of each text instance and the vertical links predict a pair of landmark points (for each keypoint) along the upper and lower text boundary, respectively. Scene texts can be located and rectified by linking up the associated landmark points (giving localization polygon boxes) and transforming the polygon boxes via thin plate spline, respectively. Extensive experiments over several public datasets show that the use of text keypoints is tolerant to the variation in text orientations, lengths, and curvatures, and it achieves superior scene text detection and rectification performance as compared with state-of-the-art methods.



قيم البحث

اقرأ أيضاً

117 - Xugong Qin , Yu Zhou , Youhui Guo 2021
Due to the large success in object detection and instance segmentation, Mask R-CNN attracts great attention and is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting. However, two issues remain to be settled. T he first is dense text case, which is easy to be neglected but quite practical. There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance. In this work, we argue that the performance degradation results from the learning confusion issue in the mask head. We propose to use an MLP decoder instead of the deconv-conv decoder in the mask head, which alleviates the issue and promotes robustness significantly. And we propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text. With instance-aware mask learning, the mask branch can learn separated and compact masks. The second is that due to large variations in scale and aspect ratio, RPN needs complicated anchor settings, making it hard to maintain and transfer across different datasets. To settle this issue, we propose an adaptive label assignment in which all instances especially those with extreme aspect ratios are guaranteed to be associated with enough anchors. Equipped with these components, the proposed method named MAYOR achieves state-of-the-art performance on five benchmarks including DAST1500, MSRA-TD500, ICDAR2015, CTW1500, and Total-Text.
One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image spatial domain via m asks or contour point sequences in the Cartesian or the polar coordinate system. However, the mask representation might lead to expensive post-processing, while the point sequence one may have limited capability to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a simple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit contours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the state-of-the-art (SOTA) methods on CTW1500 and Total-Text, especially on challenging highly-curved text subset.
132 - Pengwen Dai , Xiaochun Cao 2021
Numerous scene text detection methods have been proposed in recent years. Most of them declare they have achieved state-of-the-art performances. However, the performance comparison is unfair, due to lots of inconsistent settings (e.g., training data, backbone network, multi-scale feature fusion, evaluation protocols, etc.). These various settings would dissemble the pros and cons of the proposed core techniques. In this paper, we carefully examine and analyze the inconsistent settings, and propose a unified framework for the bottom-up based scene text detection methods. Under the unified framework, we ensure the consistent settings for non-core modules, and mainly investigate the representations of describing arbitrary-shape scene texts, e.g., regressing points on text contours, clustering pixels with predicted auxiliary information, grouping connected components with learned linkages, etc. With the comprehensive investigations and elaborate analyses, it not only cleans up the obstacle of understanding the performance differences between existing methods but also reveals the advantages and disadvantages of previous models under fair comparisons.
266 - Youhui Guo , Yu Zhou , Xugong Qin 2021
Scene text detection has drawn the close attention of researchers. Though many methods have been proposed for horizontal and oriented texts, previous methods may not perform well when dealing with arbitrary-shaped texts such as curved texts. In parti cular, confusion problem arises in the case of nearby text instances. In this paper, we propose a simple yet effective method for accurate arbitrary-shaped nearby scene text detection. Firstly, a One-to-Many Training Scheme (OMTS) is designed to eliminate confusion and enable the proposals to learn more appropriate groundtruths in the case of nearby text instances. Secondly, we propose a Proposal Feature Attention Module (PFAM) to exploit more effective features for each proposal, which can better adapt to arbitrary-shaped text instances. Finally, we propose a baseline that is based on Faster R-CNN and outputs the curve representation directly. Equipped with PFAM and OMTS, the detector can achieve state-of-the-art or competitive performance on several challenging benchmarks.
A crucial component for the scene text based reasoning required for TextVQA and TextCaps datasets involve detecting and recognizing text present in the images using an optical character recognition (OCR) system. The current systems are crippled by th e unavailability of ground truth text annotations for these datasets as well as lack of scene text detection and recognition datasets on real images disallowing the progress in the field of OCR and evaluation of scene text based reasoning in isolation from OCR systems. In this work, we propose TextOCR, an arbitrary-shaped scene text detection and recognition with 900k annotated words collected on real images from TextVQA dataset. We show that current state-of-the-art text-recognition (OCR) models fail to perform well on TextOCR and that training on TextOCR helps achieve state-of-the-art performance on multiple other OCR datasets as well. We use a TextOCR trained OCR model to create PixelM4C model which can do scene text based reasoning on an image in an end-to-end fashion, allowing us to revisit several design choices to achieve new state-of-the-art performance on TextVQA dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا