ترغب بنشر مسار تعليمي؟ اضغط هنا

Technical Report for A Joint User Scheduling and Trajectory Planning Data Collection Strategy for the UAV-assisted WSN

59   0   0.0 ( 0 )
 نشر من قبل Xindi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unmanned aerial vehicles (UAVs) are usually dispatched as mobile sinks to assist data collection in large-scale wireless sensor networks (WSNs). However, when considering the limitations of UAVs mobility and communication capabilities in a large-scale WSN, some sensor nodes may run out of storage space as they fail to offload their data to the UAV for an extended period of time. To minimize the data loss caused by the above issue, a joint user scheduling and trajectory planning data collection strategy is proposed in this letter, which is formulated as a non-convex optimization problem. The problem is further divided into two sub-problems and solved sequentially. Simulation results show that the proposed strategy is more effective in minimizing data loss rate than other strategies.



قيم البحث

اقرأ أيضاً

161 - Weisen Shi , Junlng Li , Nan Cheng 2019
Drone base station (DBS) is a promising technique to extend wireless connections for uncovered users of terrestrial radio access networks (RAN). To improve user fairness and network performance, in this paper, we design 3D trajectories of multiple DB Ss in the drone assisted radio access networks (DA-RAN) where DBSs fly over associated areas of interests (AoIs) and relay communications between the base station (BS) and users in AoIs. We formulate the multi-DBS 3D trajectory planning and scheduling as a mixed integer non-linear programming (MINLP) problem with the objective of minimizing the average DBS-to-user (D2U) pathloss. The 3D trajectory variations in both horizontal and vertical directions, as well as the state-of-the-art DBS-related channel models are considered in the formulation. To address the non-convexity and NP-hardness of the MINLP problem, we first decouple it into multiple integer linear programming (ILP) and quasi-convex sub-problems in which AoI association, D2U communication scheduling, horizontal trajectories and flying heights of DBSs are respectively optimized. Then, we design a multi-DBS 3D trajectory planning and scheduling algorithm to solve the sub-problems iteratively based on the block coordinate descent (BCD) method. A k-means-based initial trajectory generation and a search-based start slot scheduling are considered in the proposed algorithm to improve trajectory design performance and ensure inter-DBS distance constraint, respectively. Extensive simulations are conducted to investigate the impacts of DBS quantity, horizontal speed and initial trajectory on the trajectory planning results. Compared with the static DBS deployment, the proposed trajectory planning can achieve 10-15 dB reduction on average D2U pathloss, and reduce the D2U pathloss standard deviation by 68%, which indicate the improvements of network performance and user fairness.
The use of the unmanned aerial vehicle (UAV) has been foreseen as a promising technology for the next generation communication networks. Since there are no regulations for UAVs deployment yet, most likely they form a network in coexistence with an al ready existed network. In this work, we consider a transmission mechanism that aims to improve the data rate between a terrestrial base station (BS) and user equipment (UE) through deploying multiple UAVs relaying the desired data flow. Considering the coexistence of this network with other established communication networks, we take into account the effect of interference, which is incurred by the existing nodes. Our primary goal is to optimize the three-dimensional (3D) trajectories and power allocation for the relaying UAVs to maximize the data flow while keeping the interference to existing nodes below a predefined threshold. An alternating-maximization strategy is proposed to solve the joint 3D trajectory design and power allocation for the relaying UAVs. To this end, we handle the information exchange within the network by resorting to spectral graph theory and subsequently address the power allocation through convex optimization techniques. Simulation results show that our approach can considerably improve the information flow while the interference threshold constraint is met.
This paper studies an unmanned aerial vehicle (UAV)-assisted wireless network, where a UAV is dispatched to gather information from ground sensor nodes (SN) and transfer the collected data to the depot. The information freshness is captured by the ag e of information (AoI) metric, whilst the energy consumption of the UAV is seen as another performance criterion. Most importantly, the AoI and energy efficiency are inherently competing metrics, since decreasing the AoI requires the UAV returning to the depot more frequently, leading to a higher energy consumption. To this end, we design UAV paths that optimize these two competing metrics and reveal the Pareto frontier. To formulate this problem, a multi-objective mixed integer linear programming (MILP) is proposed with a flow-based constraint set and we apply Benders decomposition on the proposed formulation. The overall outcome shows that the proposed method allows deriving non-dominated solutions for decision making for UAV based wireless data collection. Numerical results are provided to corroborate our study by presenting the Pareto front of the two objectives and the effect on the UAV trajectory.
Unmanned Aerial Vehicles (UAVs) have been emerging as an effective solution for IoT data collection networks thanks to their outstanding flexibility, mobility, and low operation costs. However, due to the limited energy and uncertainty from the data collection process, speed control is one of the most important factors to optimize the energy usage efficiency and performance for UAV collectors. This work aims to develop a novel autonomous speed control approach to address this issue. To that end, we first formulate the dynamic speed control task of a UAV as a Markov decision process taking into account its energy status and location. In this way, the Q-learning algorithm can be adopted to obtain the optimal speed control policy for the UAV. To further improve the system performance, we develop an highly-effective deep dueling double Q-learning algorithm utilizing outstanding features of the deep neural networks as well as advanced dueling architecture to quickly stabilize the learning process and obtain the optimal policy. Through simulation results, we show that our proposed solution can achieve up to 40% greater performance compared with other conventional methods. Importantly, the simulation results also reveal significant impacts of UAVs energy and charging time on the system performance.
In this paper, an unmanned aerial vehicle (UAV)-assisted wireless network is considered in which a battery-constrained UAV is assumed to move towards energy-constrained ground nodes to receive status updates about their observed processes. The UAVs f light trajectory and scheduling of status updates are jointly optimized with the objective of minimizing the normalized weighted sum of Age of Information (NWAoI) values for different physical processes at the UAV. The problem is first formulated as a mixed-integer program. Then, for a given scheduling policy, a convex optimization-based solution is proposed to derive the UAVs optimal flight trajectory and time instants on updates. However, finding the optimal scheduling policy is challenging due to the combinatorial nature of the formulated problem. Therefore, to complement the proposed convex optimization-based solution, a finite-horizon Markov decision process (MDP) is used to find the optimal scheduling policy. Since the state space of the MDP is extremely large, a novel neural combinatorial-based deep reinforcement learning (NCRL) algorithm using deep Q-network (DQN) is proposed to obtain the optimal policy. However, for large-scale scenarios with numerous nodes, the DQN architecture cannot efficiently learn the optimal scheduling policy anymore. Motivated by this, a long short-term memory (LSTM)-based autoencoder is proposed to map the state space to a fixed-size vector representation in such large-scale scenarios. A lower bound on the minimum NWAoI is analytically derived which provides system design guidelines on the appropriate choice of importance weights for different nodes. The numerical results also demonstrate that the proposed NCRL approach can significantly improve the achievable NWAoI per process compared to the baseline policies, such as weight-based and discretized state DQN policies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا