ﻻ يوجد ملخص باللغة العربية
This paper studies an unmanned aerial vehicle (UAV)-assisted wireless network, where a UAV is dispatched to gather information from ground sensor nodes (SN) and transfer the collected data to the depot. The information freshness is captured by the age of information (AoI) metric, whilst the energy consumption of the UAV is seen as another performance criterion. Most importantly, the AoI and energy efficiency are inherently competing metrics, since decreasing the AoI requires the UAV returning to the depot more frequently, leading to a higher energy consumption. To this end, we design UAV paths that optimize these two competing metrics and reveal the Pareto frontier. To formulate this problem, a multi-objective mixed integer linear programming (MILP) is proposed with a flow-based constraint set and we apply Benders decomposition on the proposed formulation. The overall outcome shows that the proposed method allows deriving non-dominated solutions for decision making for UAV based wireless data collection. Numerical results are provided to corroborate our study by presenting the Pareto front of the two objectives and the effect on the UAV trajectory.
In wireless sensor networks (WSNs), utilizing the unmanned aerial vehicle (UAV) as a mobile data collector for the ground sensor nodes (SNs) is an energy-efficient technique to prolong the network lifetime. Specifically, since the UAV can sequentiall
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial no
This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV as
Unmanned Aerial Vehicles (UAVs) have been emerging as an effective solution for IoT data collection networks thanks to their outstanding flexibility, mobility, and low operation costs. However, due to the limited energy and uncertainty from the data