ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-field thermal transport between twisted bilayer graphene

77   0   0.0 ( 0 )
 نشر من قبل Fuwei Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active control of heat flow is of both fundamental and applied interest in thermal management and energy conversion. Here, we present a fluctuational electrodynamic study of thermal radiation between twisted bilayer graphene (TBLG), motivated by its unusual and highly tunable plasmonic properties. We show that near-field heat flow can vary by more than 10-fold over only a few degrees of twist, and identify special angles leading to heat flow extrema. These special angles are dictated by the Drude weight in the intraband optical conductivity of TBLG, and are roughly linear with the chemical potential. Further, we observe multiband thermal transport due to the increasing role of interband transitions as the twist angle decreases, in analogy to monolayer graphene in a magnetic field. Our findings are understood via the surface plasmons in TBLG, and highlight its potential for manipulating radiative heat flow.



قيم البحث

اقرأ أيضاً

Using the semiclassical quantum Boltzmann theory and employing the Dirac model with twist angle-dependent Fermi velocity we obtain results for the electrical resistivity, the electronic thermal resistivity, the Seebeck coefficient, and the Wiedemann- Franz ratio in near magic angle twisted bilayer graphene, as functions of doping density (around the charge-neutrality-point) and modified Fermi velocity $tilde v$. The $tilde v$-dependence of the relevant scattering mechanisms, i.e. electron-hole Coulomb, long-ranged impurities, and acoustic gauge phonons, is considered in detail. We find a range of twist angles and temperatures, where the combined effect of momentum-non-conserving collisions (long-ranged impurities and phonons) is minimal, opening a window for the observation of strong hydrodynamic transport. Several experimental signatures are identified, such as a sharp dependence of the electric resistivity on doping density and a large enhancement of the Wiedemann-Franz ratio and the Seebeck coefficient.
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to up per and lower graphene layers separately, we explore systematically the dependence of electronic transport on the twist angle, Fermi energy, system size, layer stacking order and twist axis. When choose different twist axes for either AA- or AB-stacked bilayer graphene, we find that the dependence of conductance on twist angle displays qualitatively distinction, i.e., the systems with top axis exhibit finite conductance oscillating as a function of the twist angle, while the ones with hollow axis exhibit nearly vanishing conductance for different twist angles or Fermi energies near the charge neutrality point. These findings suggest that the choice of twist axis can effectively tune the interlayer conductance, making it a crucial factor in designing of nanodevices with the twisted van der Waals multilayers.
We study conductance across a twisted bilayer graphene coupled to single-layer graphene leads in two setups: a flake of graphene on top of an infinite graphene ribbon and two overlapping semi-infinite graphene ribbons. We find conductance strongly de pends on the angle between the two graphene layers and identify three qualitatively different regimes. For large angles ($theta gtrsim 10^{circ}$) there are strong commensurability effects for incommensurate angles the low energy conductance approaches that of two disconnected layers, while sharp conductance features correlate with commensurate angles with small unit cells. For intermediate angles ($3^{circ}lesssim theta lesssim 10^{circ}$), we find a one-to-one correspondence between certain conductance features and the twist-dependent Van Hove singularities arising at low energies, suggesting conductance measurements can be used to determine the twist angle. For small twist angles ($1^{circ}lesssimthetalesssim 3^{circ}$), commensurate effects seem to be washed out and the conductance becomes a smooth function of the angle. In this regime, conductance can be used to probe the narrow bands, with vanishing conductance regions corresponding to spectral gaps in the density of states, in agreement with recent experimental findings.
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha s opened new vistas in the topological materials landscape. Here we report on evidence, obtained by combining thermodynamic measurements, local and non-local transport measurements, and theoretical calculations, that robust topologically non-trivial, valley Chern insulators occur at charge neutrality in twisted double-bilayer graphene (TDBG). These time reversal-conserving valley Chern insulators are enabled by valley-number conservation, a symmetry that emerges from the moire pattern. The thermodynamic gap extracted from chemical potential measurements proves that TDBG is a bulk insulator under transverse electric field, while transport measurements confirm the existence of conducting edge states. A Landauer-Buttiker analysis of measurements on multi-terminal samples allows us to quantitatively assess edge state scattering and demonstrate that it does not destroy the edge states, leaving the bulk-boundary correspondence largely intact.
We explore a network of electronic quantum valley Hall (QVH) states in the moire crystal of minimally twisted bilayer graphene. In our transport measurements we observe Fabry-Perot and Aharanov-Bohm oscillations which are robust in magnetic fields ra nging from 0 to 8T, in strong contrast to more conventional 2D systems where trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic field and the linear spacing in density indicate that charge carriers in the bulk flow in topologically protected, one dimensional channels. With this work we demonstrate coherent electronic transport in a lattice of topologically protected states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا