ﻻ يوجد ملخص باللغة العربية
I discuss constraints on the power spectrum of primordial tensor perturbations from a combination of Cosmic Microwave Background (CMB) measurements and the gravitational wave direct detection experiments LIGO/Virgo and DECIGO. There are two main points: (1) Inflation predicts an approximately power-law form for the primordial tensor spectrum, but makes no prediction for its amplitude. Given that neither Planck nor LIGO/Virgo has actually detected primordial tensor modes, it is trivially true that no model-independent constraint on the slope of the tensor power spectrum is possible with current data. (2) CMB and LIGO/Virgo scales differ by more than 19 orders of magnitude, and 16 for DECIGO. I show that a power-law extrapolation from CMB to direct detection frequencies overestimates the amplitude of primordial tensor modes by as much as two orders of magnitude relative to an ensemble of realistic single-field inflation models. Moreover, the primordial tensor amplitude at direct detection scales is mostly uncorrelated with the tensor spectral index at CMB scales, and any constraint is strongly dependent on the specific form of the inflationary potential.
We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both G
We present a new signature by which to one could potentially discriminate between a spectrum of gravitational radiation generated by a self-ordering scalar field vs that of inflation, specifically a comparison of the magnitude of a flat spectrum at f
We present robust constraints on the stochastic gravitational waves (GWs) at Mpc scales from the cosmic microwave background (CMB) data. CMB constraints on GWs are usually characterized as the tensor-to-scalar ratio, assuming specifically a power-law
Gravitational waves (GWs) are one of the key signatures of cosmic strings. If GWs from cosmic strings are detected in future experiments, not only their existence can be confirmed but also their properties might be probed. In this paper, we study the
Primordial magnetic fields (PMFs) can source gravitational wave background (GWB). In this paper, we investigate the possible constraints on small-scale PMF considering the ongoing and forthcoming direct detection observations of GWB. In contrast to t