ﻻ يوجد ملخص باللغة العربية
We study the quantum phase transitions of frustrated antiferromagnetic Heisenberg spin-1 systems on the 3/4 and 3/5 skewed two leg ladder geometries. These systems can be viewed as arising by periodically removing rung bonds from a zigzag ladder. We find that in large systems, the ground state (gs) of the 3/4 ladder switches from a singlet to a magnetic state for $J_1 ge 1.82$; the gs spin corresponds to ferromagnetic alignment of effective $S = 2$ objects on each unit cell. The gs of antiferromagnetic exchange Heisenberg spin-1 system on a 3/5 skewed ladder is highly frustrated and has spiral spin arrangements. The amplitude of the spin density wave in the 3/5 ladder is significantly larger compared to that in the magnetic state of the 3/4 ladder. The gs of the system switches between singlet state and low spin magnetic states multiple times on tuning $J_1$ in a finite size system. The switching pattern is nonmonotonic as a function of $J_1$, and depends on the system size. It appears to be the consequence of higher $J_1$ favoring higher spin magnetic state and the finite system favoring a standing spin wave. For some specific parameter values, the magnetic gs in the 3/5 system is doubly degenerate in two different mirror symmetry subspaces. This degeneracy leads to spontaneous spin parity and mirror symmetry breaking giving rise to spin current in the gs of the system.
The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered rings is studied numerically using exact diagonalization technique up to 16 spins and using density matrix renormalization group method for larg
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic
In this work we report the opening of an energy gap at the filling factor $ u=3+1/3$, firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifical
Magnetization plateaus are some of the most striking manifestations of frustration in low-dimensional spin systems. We present numerical studies of magnetization plateaus in the fascinating spin-1/2 skewed ladder system obtained by alternately fusing
^139La nuclear magnetic resonance studies reveal markedly different magnetic properties of the two sites created by the charged domain wall formation in La_(5/3)Sr_(1/3)NiO_4. NMR is slow compared to neutron scattering; we observe a 30 K suppression