ﻻ يوجد ملخص باللغة العربية
The quantum phases in a spin-1 skewed ladder system formed by alternately fusing five- and seven-membered rings is studied numerically using exact diagonalization technique up to 16 spins and using density matrix renormalization group method for larger system sizes. The ladder has isotropic antiferromagnetic (AF) exchange interaction ($J_2 = 1$) between the nearest neighbor spins along the legs, varying isotropic AF exchange interaction ($J_1$) along the rungs. As a function of $J_1$, the system shows many interesting ground states (gs) which vary from different types of nonmagnetic gs to different kinds of ferrimagnetic gs. Study of different gs properties such as spin gap, spin-spin correlations, spin density and bond order reveal that the system has four distinct phases namely, AF phase at small $J_1$, ferrimagnetic phase with gs spin $S_G = n$ for $1.44 < J_1 < 4.74$ and with $S_G = 2n$ for $J_1 > 5.63$, where $n$ is the number of unit cells, a reentrant nonmagnetic phase at $4.74 < J_1 < 5.44$. The system also shows the presence of spin current at specific $J_1$ values due to simultaneous breaking of both reflection and spin parity symmetries.
Magnetization plateaus are some of the most striking manifestations of frustration in low-dimensional spin systems. We present numerical studies of magnetization plateaus in the fascinating spin-1/2 skewed ladder system obtained by alternately fusing
We study the quantum phase transitions of frustrated antiferromagnetic Heisenberg spin-1 systems on the 3/4 and 3/5 skewed two leg ladder geometries. These systems can be viewed as arising by periodically removing rung bonds from a zigzag ladder. We
The quantum phases of 2-leg spin-1/2 ladders with skewed rungs are obtained using exact diagonalization of systems with up to 26 spins and by density matrix renormalization group calculations to 500 spins. The ladders have isotropic antiferromagnetic
The static structure factor S(q) of frustrated spin-1/2 chains with isotropic exchange and a singlet ground state (GS) diverges at wave vector q_m when the GS has quasi-long-range order (QLRO) with periodicity 2pi/q_m but S(q_m) is finite in bond-ord
We report experimental and theoretical evidence that Rb$_2$Cu$_2$Mo$_3$O$_{12}$ has a nonmagnetic tetramer ground state of a two-leg ladder comprising antiferromagnetically coupled frustrated spin-$1/2$ chains and exhibits a Haldane spin gap of emerg