ﻻ يوجد ملخص باللغة العربية
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called functional data. This paper is concerned with comparing two or more stochastic processes that generate functional data. The data may be produced by a randomized experiment in which there are multiple treatments. The paper presents a method for testing the hypothesis that the same stochastic process generates all the functional data. The test described here applies to both functional data and multiple treatments. It is implemented as a combination of two permutation tests. This ensures that in finite samples, the true and nominal probabilities that each test rejects a correct null hypothesis are equal. The paper presents upper and lower bounds on the asymptotic power of the test under alternative hypotheses. The results of Monte Carlo experiments and an application to an experiment on billing and pricing of natural gas illustrate the usefulness of the test.
In this paper, we generalize the metric-based permutation test for the equality of covariance operators proposed by Pigoli et al. (2014) to the case of multiple samples of functional data. To this end, the non-parametric combination methodology of Pe
Classical two-sample permutation tests for equality of distributions have exact size in finite samples, but they fail to control size for testing equality of parameters that summarize each distribution. This paper proposes permutation tests for equal
We study the problem of independence testing given independent and identically distributed pairs taking values in a $sigma$-finite, separable measure space. Defining a natural measure of dependence $D(f)$ as the squared $L^2$-distance between a joint
Permutation tests are widely used in statistics, providing a finite-sample guarantee on the type I error rate whenever the distribution of the samples under the null hypothesis is invariant to some rearrangement. Despite its increasing popularity and
One of the classic concerns in statistics is determining if two samples come from thesame population, i.e. homogeneity testing. In this paper, we propose a homogeneitytest in the context of Functional Data Analysis, adopting an idea from multivariate