ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complex Korteweg-de Vries Equation: A Deeper Theory of Shallow Water Waves

106   0   0.0 ( 0 )
 نشر من قبل Matthew Crabb
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using Levi-Civitas theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximations for shallow water. The complex KdV equation describes the nontrivial dynamics of all water particles from the surface to the bottom of the water layer. A crucial new step made in our work is the proof that a natural consequence of the complex KdV theory is that the wave elevation is described by the real KdV equation. The complex KdV approach in the theory of shallow fluids is thus more fundamental than the one based on the real KdV equation. We demonstrate how it allows direct calculation of the particle trajectories at any point of the fluid, and that these results agree well with numerical simulations of other authors.



قيم البحث

اقرأ أيضاً

By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms in each order of the perturbative expansion, we show that the Korteweg-de Vries hierarchy equations do appear in the description of such waves. Finally, we show that this procedure of eliminating secularities is closely related to the renormalization technique introduced by Kodama and Taniuti.
With the assistance of one fold Darboux transformation formula, we derive rogue wave solutions of the complex modified Korteweg-de Vries equation on an elliptic function background. We employ an algebraic method to find the necessary squared eigenfun ctions and eigenvalues. To begin we construct the elliptic function background. Then, on top of this background, we create a rogue wave. We demonstrate the outcome for three distinct elliptic modulus values. We find that when we increase the modulus value the amplitude of rogue waves on the dn-periodic background decreases whereas it increases in the case of cn-periodic background.
We apply a multiple-time version of the reductive perturbation method to study long waves as governed by the shallow water wave model equation. As a consequence of the requirement of a secularity-free perturbation theory, we show that the well known N-soliton dynamics of the shallow water wave equation, in the particular case of $alpha=2 beta$, can be reduced to the N-soliton solution that satisfies simultaneously all equations of the Korteweg-de Vries hierarchy.
In this Letter we demonstrate for the first time the formation of the inverse energy cascade in the focusing modified Korteweg-de Vries (mKdV) equation. We study numerically the properties of this cascade such as the dependence of the spectrum shape on the initial excitation parameter (amplitude), perturbation magnitude and the size of the spectral domain. Most importantly we found that the inverse cascade is always accompanied by the direct one and they both form a very stable quasi-stationary structure in the Fourier space in the spirit of the FPU-like reoccurrence phenomenon. The formation of this structure is intrinsically related to the development of the nonlinear stage of the Modulational Instability (MI). These results can be used in several fields such as the internal gravity water waves, ion-acoustic waves in plasmas and others.
190 - A.M. Kamchatnov 2015
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained for each case. The essential difference between them is illustrated by an example of so-called `generalized Korteweg-de Vries equation. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا