ﻻ يوجد ملخص باللغة العربية
In this Letter we demonstrate for the first time the formation of the inverse energy cascade in the focusing modified Korteweg-de Vries (mKdV) equation. We study numerically the properties of this cascade such as the dependence of the spectrum shape on the initial excitation parameter (amplitude), perturbation magnitude and the size of the spectral domain. Most importantly we found that the inverse cascade is always accompanied by the direct one and they both form a very stable quasi-stationary structure in the Fourier space in the spirit of the FPU-like reoccurrence phenomenon. The formation of this structure is intrinsically related to the development of the nonlinear stage of the Modulational Instability (MI). These results can be used in several fields such as the internal gravity water waves, ion-acoustic waves in plasmas and others.
Using Levi-Civitas theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximat
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro
With the assistance of one fold Darboux transformation formula, we derive rogue wave solutions of the complex modified Korteweg-de Vries equation on an elliptic function background. We employ an algebraic method to find the necessary squared eigenfun