ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the Inverse Energy Cascade in the modified Korteweg-de Vries Equation

126   0   0.0 ( 0 )
 نشر من قبل Denys Dutykh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Letter we demonstrate for the first time the formation of the inverse energy cascade in the focusing modified Korteweg-de Vries (mKdV) equation. We study numerically the properties of this cascade such as the dependence of the spectrum shape on the initial excitation parameter (amplitude), perturbation magnitude and the size of the spectral domain. Most importantly we found that the inverse cascade is always accompanied by the direct one and they both form a very stable quasi-stationary structure in the Fourier space in the spirit of the FPU-like reoccurrence phenomenon. The formation of this structure is intrinsically related to the development of the nonlinear stage of the Modulational Instability (MI). These results can be used in several fields such as the internal gravity water waves, ion-acoustic waves in plasmas and others.



قيم البحث

اقرأ أيضاً

Using Levi-Civitas theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximat ions for shallow water. The complex KdV equation describes the nontrivial dynamics of all water particles from the surface to the bottom of the water layer. A crucial new step made in our work is the proof that a natural consequence of the complex KdV theory is that the wave elevation is described by the real KdV equation. The complex KdV approach in the theory of shallow fluids is thus more fundamental than the one based on the real KdV equation. We demonstrate how it allows direct calculation of the particle trajectories at any point of the fluid, and that these results agree well with numerical simulations of other authors.
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be haviors. In the process of spectral analysis, it is necessary to introduce Riemann surface to avoid the discussion of multi-valued functions, and to obtain the analytical and asymptotic properties needed to establish the RH problem. The eigenfunction have a column that is not analytic in a given region, so we introduce the auxiliary eigenfunction and the adjoint matrix, which is necessary to derive the analytical eigenfunctions. The eigenfunctions have three kinds of symmetry, which leads to three kinds of symmetry of the scattering matrix, and the discrete spectrum is also divided into three categories by us. The asymptoticity of the modified eigenfunction is derived. Based on the analysis, the RH problem with four jump matrices in a given area is established, and the relationship between the cmKdV equation and the solution of the RH problem is revealed. The residue condition of reflection coefficient with simple pole is established. According to the classification of discrete spectrum, we discuss the soliton solutions corresponding to three kinds of discrete spectrum classification and their propagation behaviors in detail.
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als o expressed by determinants whose elements consist of the eigenvalues $lambda_{j}$ and the corresponding eigenfunctions of the associated Lax equation. The nonsingular $n$-positon solutions of the focusing mKdV equation are obtained in the special limit $lambda_{j}rightarrowlambda_{1}$, from the corresponding $n$-soliton solutions and by using the associated higher-order Taylor expansion. Furthermore, the decomposition method of the $n$-positon solution into $n$ single-soliton solutions, the trajectories, and the corresponding phase shifts of the multi-positons are also investigated.
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro blem, by introducing a suitable uniform transformation we establish the proper complex $z$-plane in order to discuss the Jost eigenfunctions, scattering matrix and their analyticity and symmetry of the equation. Moreover the asymptotic behavior of the Jost functions and scattering matrix needed in the inverse problem are analyzed via Wentzel-Kramers-Brillouin expansion. In the inverse problem, the generalized Riemann-Hilbert problem of the mmKdV equation is first established by using the analyticity of the modified eigenfunctions and scattering coefficients. The reconstruction formula of potential function with reflection-less case is derived by solving this Riemann-Hilbert problem and using the scattering data. In addition the dynamic behavior of the solutions for the focusing mmKdV equation including one- and two- soliton solutions are presented in detail under the the condition that the potential is scalar and the $2times2$ symmetric matrix. Finally, we provide some detailed proofs and weak version of trace formulas to show that the asymptotic phase of the potential and the scattering data.
With the assistance of one fold Darboux transformation formula, we derive rogue wave solutions of the complex modified Korteweg-de Vries equation on an elliptic function background. We employ an algebraic method to find the necessary squared eigenfun ctions and eigenvalues. To begin we construct the elliptic function background. Then, on top of this background, we create a rogue wave. We demonstrate the outcome for three distinct elliptic modulus values. We find that when we increase the modulus value the amplitude of rogue waves on the dn-periodic background decreases whereas it increases in the case of cn-periodic background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا