ﻻ يوجد ملخص باللغة العربية
We propose a notation for tensors with named axes, which relieves the author, reader, and future implementers from the burden of keeping track of the order of axes and the purpose of each. It also makes it easy to extend operations on low-order tensors to higher order ones (e.g., to extend an operation on images to minibatches of images, or extend the attention mechanism to multiple attention heads). After a brief overview of our notation, we illustrate it through several examples from modern machine learning, from building blocks like attention and convolution to full models like Transformers and LeNet. Finally, we give formal definitions and describe some extensions. Our proposals build on ideas from many previous papers and software libraries. We hope that this document will encourage more authors to use named tensors, resulting in clearer papers and less bug-prone implementations. The source code for this document can be found at https://github.com/namedtensor/notation/. We invite anyone to make comments on this proposal by submitting issues or pull requests on this repository.
We present a weakly-supervised data augmentation approach to improve Named Entity Recognition (NER) in a challenging domain: extracting biomedical entities (e.g., proteins) from the scientific literature. First, we train a neural NER (NNER) model ove
Accelerating tensor applications on spatial architectures provides high performance and energy-efficiency, but requires accurate performance models for evaluating various dataflow alternatives. Such modeling relies on the notation of tensor dataflow
As the field of recommender systems has developed, authors have used a myriad of notations for describing the mathematical workings of recommendation algorithms. These notations ap-pear in research papers, books, lecture notes, blog posts, and softwa
In this paper, we present a series of complementary approaches to improve the recognition of underrepresented named entities (NE) in hybrid ASR systems without compromising overall word error rate performance. The underrepresented words correspond to
The present study proposes LitStoryTeller, an interactive system for visually exploring the semantic structure of a scientific article. We demonstrate how LitStoryTeller could be used to answer some of the most fundamental research questions, such as