ﻻ يوجد ملخص باللغة العربية
In this paper, we present a series of complementary approaches to improve the recognition of underrepresented named entities (NE) in hybrid ASR systems without compromising overall word error rate performance. The underrepresented words correspond to rare or out-of-vocabulary (OOV) words in the training data, and thereby cant be modeled reliably. We begin with graphemic lexicon which allows to drop the necessity of phonetic models in hybrid ASR. We study it under different settings and demonstrate its effectiveness in dealing with underrepresented NEs. Next, we study the impact of neural language model (LM) with letter-based features derived to handle infrequent words. After that, we attempt to enrich representations of underrepresented NEs in pretrained neural LM by borrowing the embedding representations of rich-represented words. This let us gain significant performance improvement on underrepresented NE recognition. Finally, we boost the likelihood scores of utterances containing NEs in the word lattices rescored by neural LMs and gain further performance improvement. The combination of the aforementioned approaches improves NE recognition by up to 42% relatively.
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be i
Comprehending the overall intent of an utterance helps a listener recognize the individual words spoken. Inspired by this fact, we perform a novel study of the impact of explicitly incorporating intent representations as additional information to imp
In this paper we present state-of-the-art (SOTA) performance on the LibriSpeech corpus with two novel neural network architectures, a multistream CNN for acoustic modeling and a self-attentive simple recurrent unit (SRU) for language modeling. In the
Speaker-attributed automatic speech recognition (SA-ASR) is a task to recognize who spoke what from multi-talker recordings. An SA-ASR system usually consists of multiple modules such as speech separation, speaker diarization and ASR. On the other ha
Recognizing code-switched speech is challenging for Automatic Speech Recognition (ASR) for a variety of reasons, including the lack of code-switched training data. Recently, we showed that monolingual ASR systems fine-tuned on code-switched data dete