ﻻ يوجد ملخص باللغة العربية
The ability to automatically detect stuttering events in speech could help speech pathologists track an individuals fluency over time or help improve speech recognition systems for people with atypical speech patterns. Despite increasing interest in this area, existing public datasets are too small to build generalizable dysfluency detection systems and lack sufficient annotations. In this work, we introduce Stuttering Events in Podcasts (SEP-28k), a dataset containing over 28k clips labeled with five event types including blocks, prolongations, sound repetitions, word repetitions, and interjections. Audio comes from public podcasts largely consisting of people who stutter interviewing other people who stutter. We benchmark a set of acoustic models on SEP-28k and the public FluencyBank dataset and highlight how simply increasing the amount of training data improves relative detection performance by 28% and 24% F1 on each. Annotations from over 32k clips across both datasets will be publicly released.
This report presents the dataset and baseline of Task 3 of the DCASE2021 Challenge on Sound Event Localization and Detection (SELD). The dataset is based on emulation of real recordings of static or moving sound events under real conditions of reverb
Stuttering is a speech disorder which impacts the personal and professional lives of millions of people worldwide. To save themselves from stigma and discrimination, people who stutter (PWS) may adopt different strategies to conceal their stuttering.
The ranking of sound event detection (SED) systems may be biased by assumptions inherent to evaluation criteria and to the choice of an operating point. This paper compares conventional event-based and segment-based criteria against the Polyphonic So
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global ave
Domain mismatch is a noteworthy issue in acoustic event detection tasks, as the target domain data is difficult to access in most real applications. In this study, we propose a novel CNN-based discriminative training framework as a domain compensatio