ﻻ يوجد ملخص باللغة العربية
This paper proposes a network architecture mainly designed for audio tagging, which can also be used for weakly supervised acoustic event detection (AED). The proposed network consists of a modified DenseNet as the feature extractor, and a global average pooling (GAP) layer to predict frame-level labels at inference time. This architecture is inspired by the work proposed by Zhou et al., a well-known framework using GAP to localize visual objects given image-level labels. While most of the previous works on weakly supervised AED used recurrent layers with attention-based mechanism to localize acoustic events, the proposed network directly localizes events using the feature map extracted by DenseNet without any recurrent layers. In the audio tagging task of DCASE 2017, our method significantly outperforms the state-of-the-art method in F1 score by 5.3% on the dev set, and 6.0% on the eval set in terms of absolute values. For weakly supervised AED task in DCASE 2018, our model outperforms the state-of-the-art method in event-based F1 by 8.1% on the dev set, and 0.5% on the eval set in terms of absolute values, by using data augmentation and tri-training to leverage unlabeled data.
Weakly labelled audio tagging aims to predict the classes of sound events within an audio clip, where the onset and offset times of the sound events are not provided. Previous works have used the multiple instance learning (MIL) framework, and exploi
Acoustic scene classification systems using deep neural networks classify given recordings into pre-defined classes. In this study, we propose a novel scheme for acoustic scene classification which adopts an audio tagging system inspired by the human
Acoustic event classification (AEC) and acoustic event detection (AED) refer to the task of detecting whether specific target events occur in audios. As long short-term memory (LSTM) leads to state-of-the-art results in various speech related tasks,
A good joint training framework is very helpful to improve the performances of weakly supervised audio tagging (AT) and acoustic event detection (AED) simultaneously. In this study, we propose three methods to improve the best teacher-student framewo
Sound event detection is a core module for acoustic environmental analysis. Semi-supervised learning technique allows to largely scale up the dataset without increasing the annotation budget, and recently attracts lots of research attention. In this