ﻻ يوجد ملخص باللغة العربية
GeSn alloys are metastable semiconductors that have been proposed as building blocks for silicon-integrated short-wave and mid-wave infrared photonic and sensing platforms. Exploiting these semiconductors requires, however, the control of their epitaxy and their surface chemistry to reduce non-radiative recombination that hinders the efficiency of optoelectronic devices. Herein, we demonstrate that a combined sulfur- and iodine-based treatments yields effective passivation of Ge and Ge0.9Sn0.1 surfaces. X-ray photoemission spectroscopy and in situ spectroscopic ellipsometry measurements were used to investigate the dynamics of surface stability and track the reoxidation mechanisms. Our analysis shows that the largest reduction in oxide after HI treatment, while HF+(NH4)2S results in a lower re-oxidation rate. A combined HI+(NH4)2S treatment preserves the lowest oxide ratio <10 % up to 1 hour of air exposure, while less than half of the initial oxide coverage is reached after 4 hours. These results highlight the potential of S- and I-based treatments in stabilizing the GeSn surface chemistry thus enabling a passivation method that is compatible with materials and device processing.
We report fluorescence investigations and Raman spectroscopy on colloidal nanodiamonds (NDs) obtained via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition film. The BASD NDs contain in situ created silicon vaca
The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled w
The magneto-transport properties in Sulfur doped Bi2Se3 are investigated. The magnetoresistance (MR) decreases with increase of S content and finally for 7% (i.e. y=0.21) S doping the magnetoresistance becomes negative. This negative MR is unusual as
We introduce a deep-recessed gate architecture in $beta$-Ga$_2$O$_3$ delta-doped field effect transistors for improvement in DC-RF dispersion and breakdown properties. The device design incorporates an unintentionally doped $beta$-Ga$_2$O$_3$ layer a
We report on the temperature stability of pseudomorphic GeSn films grown by molecular beam epitaxy on Ge(001) substrates. Both the growth temperature-dependence and the influence of post-growth annealing steps were investigated. In either case we obs