ترغب بنشر مسار تعليمي؟ اضغط هنا

Wavelet Transform Analytics for RF-Based UAV Detection and Identification System Using Machine Learning

198   0   0.0 ( 0 )
 نشر من قبل Martins Ezuma
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we performed a thorough comparative analysis on a radio frequency (RF) based drone detection and identification system (DDI) under wireless interference, such as WiFi and Bluetooth, by using machine learning algorithms, and a pre-trained convolutional neural network-based algorithm called SqueezeNet, as classifiers. In RF signal fingerprinting research, the transient and steady state of the signals can be used to extract a unique signature from an RF signal. By exploiting the RF control signals from unmanned aerial vehicles (UAVs) for DDI, we considered each state of the signals separately for feature extraction and compared the pros and cons for drone detection and identification. Using various categories of wavelet transforms (discrete wavelet transform, continuous wavelet transform, and wavelet scattering transform) for extracting features from the signals, we built different models using these features. We studied the performance of these models under different signal to noise ratio (SNR) levels. By using the wavelet scattering transform to extract signatures (scattergrams) from the steady state of the RF signals at 30 dB SNR, and using these scattergrams to train SqueezeNet, we achieved an accuracy of 98.9% at 10 dB SNR.



قيم البحث

اقرأ أيضاً

With the development and widespread use of wireless devices in recent years (mobile phones, Internet of Things, Wi-Fi), the electromagnetic spectrum has become extremely crowded. In order to counter security threats posed by rogue or unknown transmit ters, it is important to identify RF transmitters not by the data content of the transmissions but based on the intrinsic physical characteristics of the transmitters. RF waveforms represent a particular challenge because of the extremely high data rates involved and the potentially large number of transmitters present in a given location. These factors outline the need for rapid fingerprinting and identification methods that go beyond the traditional hand-engineered approaches. In this study, we investigate the use of machine learning (ML) strategies to the classification and identification problems, and the use of wavelets to reduce the amount of data required. Four different ML strategies are evaluated: deep neural nets (DNN), convolutional neural nets (CNN), support vector machines (SVM), and multi-stage training (MST) using accelerated Levenberg-Marquardt (A-LM) updates. The A-LM MST method preconditioned by wavelets was by far the most accurate, achieving 100% classification accuracy of transmitters, as tested using data originating from 12 different transmitters. We discuss strategies for extension of MST to a much larger number of transmitters.
In this paper, we propose a novel non-contact vibration measurement system that is competent in estimating linear and/or rotational motions of machine parts. The technique combines microwave radar, standard camera, and optical strobe to capture vibra tional or rotational motions in a relatively fast and affordable manner when compared to the current technologies. In particular, the proposed technique is capable of not only measuring common vibrational parameters (e.g. frequency, motor rpm, etc.) but also provides spatial information of the vibrational sources so that the origin of each vibrational point can be identified accurately. Furthermore, it can also capture the wobbling motion of the rotating shafts. Thus, the proposed method can find immense applications in preventive maintenance across various industries where heavy machinery needs to be monitored unobtrusively or there is a requirement for non-contact multi-point vibration measurement for any machine inspection applications.
The use of supervised learning with various sensing techniques such as audio, visual imaging, thermal sensing, RADAR, and radio frequency (RF) have been widely applied in the detection of unmanned aerial vehicles (UAV) in an environment. However, lit tle or no attention has been given to the application of unsupervised or semi-supervised algorithms for UAV detection. In this paper, we proposed a semi-supervised technique and architecture for detecting UAVs in an environment by exploiting the RF signals (i.e., fingerprints) between a UAV and its flight-controller communication under wireless inference such as Bluetooth and WiFi. By decomposing the RF signals using a two-level wavelet packet transform, we estimated the second moment statistic (i.e., variance) of the coefficients in each packet as a feature set. We developed a local outlier factor model as the UAV detection algorithm using the coefficient variances of the wavelet packets from WiFi and Bluetooth signals. When detecting the presence of RF-based UAV, we achieved an accuracy of 96.7$%$ and 86$%$ at a signal-to-noise ratio of 30~dB and 18~dB, respectively. The application of this approach is not limited to UAV detection as it can be extended to the detection of rogue RF devices in an environment.
Machine learning (ML) provides effective means to learn from spectrum data and solve complex tasks involved in wireless communications. Supported by recent advances in computational resources and algorithmic designs, deep learning (DL) has found succ ess in performing various wireless communication tasks such as signal recognition, spectrum sensing and waveform design. However, ML in general and DL in particular have been found vulnerable to manipulations thus giving rise to a field of study called adversarial machine learning (AML). Although AML has been extensively studied in other data domains such as computer vision and natural language processing, research for AML in the wireless communications domain is still in its early stage. This paper presents a comprehensive review of the latest research efforts focused on AML in wireless communications while accounting for the unique characteristics of wireless systems. First, the background of AML attacks on deep neural networks is discussed and a taxonomy of AML attack types is provided. Various methods of generating adversarial examples and attack mechanisms are also described. In addition, an holistic survey of existing research on AML attacks for various wireless communication problems as well as the corresponding defense mechanisms in the wireless domain are presented. Finally, as new attacks and defense techniques are developed, recent research trends and the overarching future outlook for AML for next-generation wireless communications are discussed.
Uninterruptible power supply is the main motive of power utility companies that motivate them for identifying and locating the different types of faults as quickly as possible to protect the power system prevent complete power black outs using intell igent techniques. Thus, the present research work presents a novel method for detection of fault disturbances based on Wavelet Transform (WT) and Independent Component Analysis (ICA). The voltage signal is taken offline under fault conditions and is being processed through wavelet and ICA for detection. The time-frequency resolution from WT transform detects the fault initiation instant in the signal. Again, a performance index is calculated from independent component analysis under fault condition which is used to detect the fault disturbance in the voltage signal. The proposed approach is tested to be robust enough under various operating scenarios like without noise, with 20-dB noise and variation in frequency. Further, the detection study is carried out using a performance index, energy content, by applying the existing Fourier transform (FT), short time Fourier transform (STFT) and the proposed wavelet transform. Fault disturbances are detected if the energy calculated in each scenario is greater than the corresponding threshold value. The fault detection study is simulated in MATLAB/Simulink for a typical power system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا