ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-supervised Learning Framework for UAV Detection

100   0   0.0 ( 0 )
 نشر من قبل Martins Ezuma
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of supervised learning with various sensing techniques such as audio, visual imaging, thermal sensing, RADAR, and radio frequency (RF) have been widely applied in the detection of unmanned aerial vehicles (UAV) in an environment. However, little or no attention has been given to the application of unsupervised or semi-supervised algorithms for UAV detection. In this paper, we proposed a semi-supervised technique and architecture for detecting UAVs in an environment by exploiting the RF signals (i.e., fingerprints) between a UAV and its flight-controller communication under wireless inference such as Bluetooth and WiFi. By decomposing the RF signals using a two-level wavelet packet transform, we estimated the second moment statistic (i.e., variance) of the coefficients in each packet as a feature set. We developed a local outlier factor model as the UAV detection algorithm using the coefficient variances of the wavelet packets from WiFi and Bluetooth signals. When detecting the presence of RF-based UAV, we achieved an accuracy of 96.7$%$ and 86$%$ at a signal-to-noise ratio of 30~dB and 18~dB, respectively. The application of this approach is not limited to UAV detection as it can be extended to the detection of rogue RF devices in an environment.



قيم البحث

اقرأ أيضاً

Semi-supervised learning (SSL) has a potential to improve the predictive performance of machine learning models using unlabeled data. Although there has been remarkable recent progress, the scope of demonstration in SSL has mainly been on image class ification tasks. In this paper, we propose STAC, a simple yet effective SSL framework for visual object detection along with a data augmentation strategy. STAC deploys highly confident pseudo labels of localized objects from an unlabeled image and updates the model by enforcing consistency via strong augmentations. We propose experimental protocols to evaluate the performance of semi-supervised object detection using MS-COCO and show the efficacy of STAC on both MS-COCO and VOC07. On VOC07, STAC improves the AP$^{0.5}$ from $76.30$ to $79.08$; on MS-COCO, STAC demonstrates $2{times}$ higher data efficiency by achieving 24.38 mAP using only 5% labeled data than supervised baseline that marks 23.86% using 10% labeled data. The code is available at https://github.com/google-research/ssl_detection/.
Signet ring cell carcinoma is a type of rare adenocarcinoma with poor prognosis. Early detection leads to huge improvement of patients survival rate. However, pathologists can only visually detect signet ring cells under the microscope. This procedur e is not only laborious but also prone to omission. An automatic and accurate signet ring cell detection solution is thus important but has not been investigated before. In this paper, we take the first step to present a semi-supervised learning framework for the signet ring cell detection problem. Self-training is proposed to deal with the challenge of incomplete annotations, and cooperative-training is adapted to explore the unlabeled regions. Combining the two techniques, our semi-supervised learning framework can make better use of both labeled and unlabeled data. Experiments on large real clinical data demonstrate the effectiveness of our design. Our framework achieves accurate signet ring cell detection and can be readily applied in the clinical trails. The dataset will be released soon to facilitate the development of the area.
Responding to the challenge of detecting unusual radar targets in a well identified environment, innovative anomaly and novelty detection methods keep emerging in the literature. This work aims at presenting a benchmark gathering common and recently introduced unsupervised anomaly detection (AD) methods, the results being generated using high-resolution range profiles. A semi-supervised AD (SAD) is considered to demonstrate the added value of having a few labeled anomalies to improve performances. Experiments were conducted with and without pollution of the training set with anomalous samples in order to be as close as possible to real operational contexts. The common AD methods composing our baseline will be One-Class Support Vector Machines (OC-SVM), Isolation Forest (IF), Local Outlier Factor (LOF) and a Convolutional Autoencoder (CAE). The more innovative AD methods put forward by this work are Deep Support Vector Data Description (Deep SVDD) and Random Projection Depth (RPD), belonging respectively to deep and shallow AD. The semi-supervised adaptation of Deep SVDD constitutes our SAD method. HRRP data was generated by a coastal surveillance radar, our results thus suggest that AD can contribute to enhance maritime and coastal situation awareness.
Federated Semi-Supervised Learning (FedSSL) has gained rising attention from both academic and industrial researchers, due to its unique characteristics of co-training machine learning models with isolated yet unlabeled data. Most existing FedSSL met hods focus on the classical scenario, i.e, the labeled and unlabeled data are stored at the client side. However, in real world applications, client users may not provide labels without any incentive. Thus, the scenario of labels at the server side is more practical. Since unlabeled data and labeled data are decoupled, most existing FedSSL approaches may fail to deal with such a scenario. To overcome this problem, in this paper, we propose FedCon, which introduces a new learning paradigm, i.e., contractive learning, to FedSSL. Experimental results on three datasets show that FedCon achieves the best performance with the contractive framework compared with state-of-the-art baselines under both IID and Non-IID settings. Besides, ablation studies demonstrate the characteristics of the proposed FedCon framework.
Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this paper, we propose an Interpolation -based Semi-supervised learning method for object Detection (ISD), which considers and solves the problems caused by applying conventional Interpolation Regularization (IR) directly to object detection. We divide the output of the model into two types according to the objectness scores of both original patches that are mixed in IR. Then, we apply a separate loss suitable for each type in an unsupervised manner. The proposed losses dramatically improve the performance of semi-supervised learning as well as supervised learning. In the supervised learning setting, our method improves the baseline methods by a significant margin. In the semi-supervised learning setting, our algorithm improves the performance on a benchmark dataset (PASCAL VOC and MSCOCO) in a benchmark architecture (SSD).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا