ﻻ يوجد ملخص باللغة العربية
Reliable evaluation of adversarial defenses is a challenging task, currently limited to an expert who manually crafts attacks that exploit the defenses inner workings, or to approaches based on ensemble of fixed attacks, none of which may be effective for the specific defense at hand. Our key observation is that custom attacks are composed from a set of reusable building blocks, such as fine-tuning relevant attack parameters, network transformations, and custom loss functions. Based on this observation, we present an extensible framework that defines a search space over these reusable building blocks and automatically discovers an effective attack on a given model with an unknown defense by searching over suitable combinations of these blocks. We evaluated our framework on 23 adversarial defenses and showed it outperforms AutoAttack, the current state-of-the-art tool for reliable evaluation of adversarial defenses: our discovered attacks are either stronger, producing 3.0%-50.8% additional adversarial examples (10 cases), or are typically 2x faster while enjoying similar adversarial robustness (13 cases).
Despite the recent advances in a wide spectrum of applications, machine learning models, especially deep neural networks, have been shown to be vulnerable to adversarial attacks. Attackers add carefully-crafted perturbations to input, where the pertu
Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of underm
Deep neural networks (DNNs) have achieved significant performance in various tasks. However, recent studies have shown that DNNs can be easily fooled by small perturbation on the input, called adversarial attacks. As the extensions of DNNs to graphs,
There has been an ongoing cycle where stronger defenses against adversarial attacks are subsequently broken by a more advanced defense-aware attack. We present a new approach towards ending this cycle where we deflect adversarial attacks by causing t
As adversarial attacks against machine learning models have raised increasing concerns, many denoising-based defense approaches have been proposed. In this paper, we summarize and analyze the defense strategies in the form of symmetric transformation