ﻻ يوجد ملخص باللغة العربية
Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.
Adversarial attacks optimize against models to defeat defenses. Existing defenses are static, and stay the same once trained, even while attacks change. We argue that models should fight back, and optimize their defenses against attacks at test time.
Despite the recent advances in a wide spectrum of applications, machine learning models, especially deep neural networks, have been shown to be vulnerable to adversarial attacks. Attackers add carefully-crafted perturbations to input, where the pertu
Reliable evaluation of adversarial defenses is a challenging task, currently limited to an expert who manually crafts attacks that exploit the defenses inner workings, or to approaches based on ensemble of fixed attacks, none of which may be effectiv
We propose a method to learn deep ReLU-based classifiers that are provably robust against norm-bounded adversarial perturbations on the training data. For previously unseen examples, the approach is guaranteed to detect all adversarial examples, thou
Physiological computing uses human physiological data as system inputs in real time. It includes, or significantly overlaps with, brain-computer interfaces, affective computing, adaptive automation, health informatics, and physiological signal based