ترغب بنشر مسار تعليمي؟ اضغط هنا

$beta$-Delayed Neutron and Fission Calculations with Relativistic QRPA and Statistical Model

147   0   0.0 ( 0 )
 نشر من قبل Futoshi Minato
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A role of beta-delayed neutron emission and fission in r-process nucleosynthesis attracts a high interest. Although the number of study on them covering r-process nuclei is increasing recently, uncertainties of beta-delayed neutron and fission are still large for r-process simulations. Our purpose is to make a new database on beta-delayed neutron emission and fission rates. To this end, the data that are not investigated experimentally have to be predicted. Microscopic theoretical approaches based on a nuclear energy density functional and statistical models are one of the competent tools for the prediction. To obtain beta strength function, p-n relativistic QRPA is adopted. Particle evaporations and fission from nuclear highly excited states are estimated by the Hauser-Feshbach statistical model. beta-delayed neutron branching ratios (P_n) are calculated and compared with experimental data. beta-delayed fission branching ratio (P_f) are also assessed by using four different fission barrier data. Calculated P_n values are in a good agreement with experimental data. It is found that energy withdrawal by beta-delayed neutron emission sensitively varies P_n values for nuclei near the neutron drip line. P_f are sensitively dependent on fission barrier data. Newly calculated data on beta-delayed neutron emission and fission are summarized as a table in supplement material. They are provided for studies of r-process as well as other fields such as nuclear engineering.



قيم البحث

اقرأ أيضاً

314 - A.E. Lovell , P. Talou , I. Stetcu 2020
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission o f the prompt neutrons, preferential directions of the emission of the fission fragments with respect to the beam axis due to the population of particular transition states at the fission barrier, and forward-peaked angular distributions of pre-equilibrium neutrons which are emitted before the formation of a compound nucleus. In addition, there are several potential sources of angular anisotropies that are more difficult to disentangle: the angular distributions of prompt neutrons from fully accelerated fragments or from scission neutrons, and the emission of neutrons from fission fragments that are not fully accelerated. In this work, we study the effects of the first group of anisotropy sources, particularly exploring the correlations between the fission fragment anisotropy and the resulting neutron anisotropy. While kinematic effects were already accounted for in our Hauser-Feshbach Monte Carlo code, $mathtt{CGMF}$, anisotropic angular distributions for the fission fragments and pre-equilibrium neutrons resulting from neutron-induced fission on $^{233,234,235,238}$U, $^{239,241}$Pu, and $^{237}$Np have been introduced for the first time. The effects of these sources of anisotropy are examined over a range of incident neutron energies, from thermal to 20 MeV, and compared to experimental data from the Chi-Nu liquid scintillator array. The anisotropy of the fission fragments is reflected in the anisotropy of the prompt neutrons, especially as the outgoing energy of the prompt neutrons increases, allowing for an extraction of the fission fragment anisotropy to be made from a measurement of the neutrons.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
The neutron-rich $^{11}$Li halo nucleus is unique among nuclei with known separation energies by its ability to emit a proton and a neutron in a $beta$ decay process. The branching ratio towards this rare decay mode is evaluated within a three-body m odel for the initial bound state and with Coulomb three-body final scattering states. The branching ratio should be comprised between two extreme cases, i.e. a lower bound $6 times 10^{-12}$ obtained with a pure Coulomb wave and an upper bound $5 times 10^{-10}$ obtained with a plane wave. A simple model with modified Coulomb waves provides plausible values between between $0.8 times 10^{-10}$ and $2.2 times 10^{-10}$ with most probable total energies of the proton and neutron between 0.15 and 0.3 MeV.
175 - A.E. Lovell , I. Stetcu , P. Talou 2019
We propose a novel method to extract the prompt neutron multiplicity distribution, $P( u)$, in fission reactions based on correlations between prompt neutrons, $gamma$ rays, and fragment kinetic energy arising from energy conservation. In this approa ch, only event-by-event measurements of the total $gamma$-ray energy released as a function of the total kinetic energy (TKE) of the fission fragments are performed, and no neutron detection is required. Using the $texttt{CGMF}$ fission event generator, we illustrate the method and explore the accuracy of extracting the neutron multiplicity distribution when taking into account the energy resolution and calibration of the energy measurements. We find that a TKE resolution of under 2 MeV produces reasonably accurate results, independent of typical $gamma$-ray energy measurement resolution.
252 - I. Stetcu , A.E. Lovell , P. Talou 2021
We investigate the angular momentum removal from fission fragments (FFs) through neutron and $gamma$-ray emission, where we find that about half the neutrons are emitted with angular momenta $ge 1.5hbar$ and that the change in angular momentum after the emission of neutrons and statistical $gamma$ rays is significant, contradicting usual assumptions. Per fission event, in our simulations, the neutron and statistical $gamma$-ray emissions change the spin of the fragment by 3.5 -- 5~$hbar$, with a large standard deviation comparable to the average value. Such wide angular momentum removal distributions can hide any underlying correlations in the fission fragment initial spin values. Within our model, we reproduce data on spin measurements from discrete transitions after neutron emissions, especially in the case of light FFs. The agreement further improves for the heavy fragments if one removes from the analysis the events that would produce isomeric states. Finally, we show that while in our model the initial FF spins do not follow a saw-tooth like behavior observed in recent measurements, the average FF spin computed after neutron and statistical $gamma$ emissions exhibits a shape that resembles a saw tooth. This suggests that the average FF spin measured after statistical emissions is not necessarily connected with the scission mechanism as previously implied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا