ﻻ يوجد ملخص باللغة العربية
A role of beta-delayed neutron emission and fission in r-process nucleosynthesis attracts a high interest. Although the number of study on them covering r-process nuclei is increasing recently, uncertainties of beta-delayed neutron and fission are still large for r-process simulations. Our purpose is to make a new database on beta-delayed neutron emission and fission rates. To this end, the data that are not investigated experimentally have to be predicted. Microscopic theoretical approaches based on a nuclear energy density functional and statistical models are one of the competent tools for the prediction. To obtain beta strength function, p-n relativistic QRPA is adopted. Particle evaporations and fission from nuclear highly excited states are estimated by the Hauser-Feshbach statistical model. beta-delayed neutron branching ratios (P_n) are calculated and compared with experimental data. beta-delayed fission branching ratio (P_f) are also assessed by using four different fission barrier data. Calculated P_n values are in a good agreement with experimental data. It is found that energy withdrawal by beta-delayed neutron emission sensitively varies P_n values for nuclei near the neutron drip line. P_f are sensitively dependent on fission barrier data. Newly calculated data on beta-delayed neutron emission and fission are summarized as a table in supplement material. They are provided for studies of r-process as well as other fields such as nuclear engineering.
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission o
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is
The neutron-rich $^{11}$Li halo nucleus is unique among nuclei with known separation energies by its ability to emit a proton and a neutron in a $beta$ decay process. The branching ratio towards this rare decay mode is evaluated within a three-body m
We propose a novel method to extract the prompt neutron multiplicity distribution, $P( u)$, in fission reactions based on correlations between prompt neutrons, $gamma$ rays, and fragment kinetic energy arising from energy conservation. In this approa
We investigate the angular momentum removal from fission fragments (FFs) through neutron and $gamma$-ray emission, where we find that about half the neutrons are emitted with angular momenta $ge 1.5hbar$ and that the change in angular momentum after