ﻻ يوجد ملخص باللغة العربية
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in the macroscopic-microscopic model. The Lublin-Strasbourg Drop (LSD) is used to obtain the macroscopic part of the energy, whereas the shell and pairing energy correct
Several sources of angular anisotropy for fission fragments and prompt neutrons have been studied in neutron-induced fission reactions. These include kinematic recoils of the target from the incident neutron beam and the fragments from the emission o
A simplified, though realistic, model describing two receding and accelerating fission fragments, due to their mutual Coulomb repulsion, shows that fission fragments share excitation energy well after they ceased to exchange nucleons. This mechanism
The Hauser-Feshbach fission fragment decay model, $mathtt{HF^3D}$, which calculates the statistical decay of fission fragments, has been expanded to include multi-chance fission, up to neutron incident energies of 20 MeV. The deterministic decay take
Probabilistic machine learning techniques can learn both complex relations between input features and output quantities of interest as well as take into account stochasticity or uncertainty within a data set. In this initial work, we explore the use