ﻻ يوجد ملخص باللغة العربية
This paper is a `spiritual child of the 2005 lecture notes Kindergarten Quantum Mechanics, which showed how a simple, pictorial extension of Dirac notation allowed several quantum features to be easily expressed and derived, using language even a kindergartner can understand. Central to that approach was the use of pictures and pictorial transformation rules to understand and derive features of quantum theory and computation. However, this approach left many wondering `wheres the beef? In other words, was this new approach capable of producing new results, or was it simply an aesthetically pleasing way to restate stuff we already know? The aim of this sequel paper is to say `heres the beef!, and highlight some of the major results of the approach advocated in Kindergarten Quantum Mechanics, and how they are being applied to tackle practical problems on real quantum computers. We will focus mainly on what has become the Swiss army knife of the pictorial formalism: the ZX-calculus. First we look at some of the ideas behind the ZX-calculus, comparing and contrasting it with the usual quantum circuit formalism. We then survey results from the past 2 years falling into three categories: (1) completeness of the rules of the ZX-calculus, (2) state-of-the-art quantum circuit optimisation results in commercial and open-source quantum compilers relying on ZX, and (3) the use of ZX in translating real-world stuff like natural language into quantum circuits that can be run on todays (very limited) quantum hardware. We also take the title literally, and outline an ongoing experiment aiming to show that ZX-calculus enables children to do cutting-edge quantum computing stuff. If anything, this would truly confirm that `kindergarten quantum mechanics wasnt just a joke.
Cost-based query optimizers remain one of the most important components of database management systems for analytic workloads. Though modern optimizers select plans close to optimal performance in the common case, a small number of queries are an ord
In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability g
Star-formation rates (SFR) of disk galaxies strongly correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such small scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and
Adversarial training, a special case of multi-objective optimization, is an increasingly prevalent machine learning technique: some of its most notable applications include GAN-based generative modeling and self-play techniques in reinforcement learn
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter