ﻻ يوجد ملخص باللغة العربية
Cost-based query optimizers remain one of the most important components of database management systems for analytic workloads. Though modern optimizers select plans close to optimal performance in the common case, a small number of queries are an order of magnitude slower than they could be. In this paper we investigate why this is still the case, despite decades of improvements to cost models, plan enumeration, and cardinality estimation. We demonstrate why we believe that a re-optimization mechanism is likely the most cost-effective way to improve end-to-end query performance. We find that even a simple re-optimization scheme can improve the latency of many poorly performing queries. We demonstrate that re-optimization improves the end-to-end latency of the top 20 longest running queries in the Join Order Benchmark by 27%, realizing most of the benefit of perfect cardinality estimation.
Star-formation rates (SFR) of disk galaxies strongly correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such small scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and
In an adversarial environment, a hostile player performing a task may behave like a non-hostile one in order not to reveal its identity to an opponent. To model such a scenario, we define identity concealment games: zero-sum stochastic reachability g
We use modular invariance to derive constraints on the spectrum of warped conformal field theories (WCFTs) --- nonrelativistic quantum field theories described by a chiral Virasoro and $U(1)$ Kac-Moody algebra. We focus on holographic WCFTs and inter
Adversarial training, a special case of multi-objective optimization, is an increasingly prevalent machine learning technique: some of its most notable applications include GAN-based generative modeling and self-play techniques in reinforcement learn
This paper is a `spiritual child of the 2005 lecture notes Kindergarten Quantum Mechanics, which showed how a simple, pictorial extension of Dirac notation allowed several quantum features to be easily expressed and derived, using language even a kin