ﻻ يوجد ملخص باللغة العربية
In this paper, a novel framework is proposed to enable air-to-ground channel modeling over millimeter wave (mmWave) frequencies in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to collect mmWave channel information allowing each UAV to train a local channel model via a generative adversarial network (GAN). Next, in order to share the channel information between UAVs in a privacy-preserving manner, a cooperative framework, based on a distributed GAN architecture, is developed to enable each UAV to learn the mmWave channel distribution from the entire dataset in a fully distributed approach. The necessary and sufficient conditions for the optimal network structure that maximizes the learning rate for information sharing in the distributed network are derived. Simulation results show that the learning rate of the proposed GAN approach will increase by sharing more generated channel samples at each learning iteration, but decrease given more UAVs in the network. The results also show that the proposed GAN method yields a higher learning accuracy, compared with a standalone GAN, and improves the average rate for UAV downlink communications by over 10%, compared with a baseline real-time channel estimation scheme.
In this paper, a novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approa
Unmanned aerial vehicles (UAVs) have emerged as a promising solution to provide wireless data access for ground users in various applications (e.g., in emergence situations). This paper considers a UAV-enabled wireless network, in which multiple UAVs
Cooperative transmission can greatly improve communication system performance by taking advantage of the broadcast nature of wireless channels. Most previous work on resource allocation for cooperation transmission is based on centralized control. In
In this paper, we consider a scenario where an unmanned aerial vehicle (UAV) collects data from a set of sensors on a straight line. The UAV can either cruise or hover while communicating with the sensors. The objective is to minimize the UAVs total
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV as