ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Conditional Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave Communications in UAV Networks

335   0   0.0 ( 0 )
 نشر من قبل Qianqian Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to collect mmWave channel information, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction. Next, in order to expand the application scenarios of the trained channel model into a broader spatial-temporal domain, a cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution in a fully-distributed manner. To guarantee an efficient learning process, necessary and sufficient conditions for the optimal UAV network topology that maximizes the learning rate for cooperative channel modeling are derived, and the optimal CGAN learning solution per UAV is subsequently characterized, based on the distributed network structure. Simulation results show that the proposed distributed CGAN approach is robust to the local training error at each UAV. Meanwhile, a larger airborne network size requires more communication resources per UAV to guarantee an efficient learning rate. The results also show that, compared with a stand-alone CGAN without information sharing and two other distributed schemes, namely: A multi-discriminator CGAN and a federated CGAN method, the proposed distributed CGAN approach yields a higher modeling accuracy while learning the environment, and it achieves a larger average data rate in the online performance of UAV downlink mmWave communications.



قيم البحث

اقرأ أيضاً

In this paper, a novel framework is proposed to enable air-to-ground channel modeling over millimeter wave (mmWave) frequencies in an unmanned aerial vehicle (UAV) wireless network. First, an effective channel estimation approach is developed to coll ect mmWave channel information allowing each UAV to train a local channel model via a generative adversarial network (GAN). Next, in order to share the channel information between UAVs in a privacy-preserving manner, a cooperative framework, based on a distributed GAN architecture, is developed to enable each UAV to learn the mmWave channel distribution from the entire dataset in a fully distributed approach. The necessary and sufficient conditions for the optimal network structure that maximizes the learning rate for information sharing in the distributed network are derived. Simulation results show that the learning rate of the proposed GAN approach will increase by sharing more generated channel samples at each learning iteration, but decrease given more UAVs in the network. The results also show that the proposed GAN method yields a higher learning accuracy, compared with a standalone GAN, and improves the average rate for UAV downlink communications by over 10%, compared with a baseline real-time channel estimation scheme.
We consider a cellular network deployment where UAV-to-UAV (U2U) transmit-receive pairs share the same spectrum with the uplink (UL) of cellular ground users (GUEs). For this setup, we focus on analyzing and comparing the performance of two spectrum sharing mechanisms: (i) underlay, where the same time-frequency resources may be accessed by both UAVs and GUEs, resulting in mutual interference, and (ii)overlay, where the available resources are divided into orthogonal portions for U2U and GUE communications. We evaluate the coverage probability and rate of both link types and their interplay to identify the best spectrum sharing strategy. We do so through an analytical framework that embraces realistic height-dependent channel models, antenna patterns, and practical power control mechanisms. For the underlay, we find that although the presence of U2U direct communications may worsen the uplink performance of GUEs, such effect is limited as base stations receive the power-constrained UAV signals through their antenna sidelobes. In spite of this, our results lead us to conclude that in urban scenarios with a large number of UAV pairs, adopting an overlay spectrum sharing seems the most suitable approach for maintaining a minimum guaranteed rate for UAVs and a high GUE UL performance.
Recently, increasing works have proposed to drive evolutionary algorithms using machine learning models. Usually, the performance of such model based evolutionary algorithms is highly dependent on the training qualities of the adopted models. Since i t usually requires a certain amount of data (i.e. the candidate solutions generated by the algorithms) for model training, the performance deteriorates rapidly with the increase of the problem scales, due to the curse of dimensionality. To address this issue, we propose a multi-objective evolutionary algorithm driven by the generative adversarial networks (GANs). At each generation of the proposed algorithm, the parent solutions are first classified into real and fake samples to train the GANs; then the offspring solutions are sampled by the trained GANs. Thanks to the powerful generative ability of the GANs, our proposed algorithm is capable of generating promising offspring solutions in high-dimensional decision space with limited training data. The proposed algorithm is tested on 10 benchmark problems with up to 200 decision variables. Experimental results on these test problems demonstrate the effectiveness of the proposed algorithm.
Wireless networks with directional antennas, like millimeter wave (mmWave) networks, have enhanced security. For a large-scale mmWave ad hoc network in which eavesdroppers are randomly located, however, eavesdroppers can still intercept the confident ial messages, since they may reside in the signal beam. This paper explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate. We also characterize the impact of artificial noise in such networks. Our results reveal that in the low transmit powerregime, the use of low mmWave frequency achieves better secrecy performance, and when increasing transmit power, a transition from low mmWave frequency to high mmWave frequency is demanded for obtaining a higher secrecy rate. More antennas at the transmitting nodes are needed to decrease the antenna gain obtained by the eavesdroppers when using ULA. Eavesdroppers can intercept more information by using a wide beam pattern. Furthermore, the use of artificial noise may be ineffective for enhancing the secrecy rate.
In this article, we consider the problem of high-dimensional conditional independence testing, which is a key building block in statistics and machine learning. We propose a double generative adversarial networks (GANs)-based inference procedure. We first introduce a double GANs framework to learn two generators, and integrate the two generators to construct a doubly-robust test statistic. We next consider multiple generalized covariance measures, and take their maximum as our test statistic. Finally, we obtain the empirical distribution of our test statistic through multiplier bootstrap. We show that our test controls type-I error, while the power approaches one asymptotically. More importantly, these theoretical guarantees are obtained under much weaker and practically more feasible conditions compared to existing tests. We demonstrate the efficacy of our test through both synthetic and real datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا