ﻻ يوجد ملخص باللغة العربية
Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantify phase coupling between two resonant frequencies (e.g. $f$, $2f/3$) and across three frequencies (e.g. $f_1$, $f_2$, $f_1+f_2$), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. $f_1$, $f_2$, $f_3$, $f_4$, $f_1+f_2+f_3-f_4$), or coupling that involves non-integer multiples of the frequencies (e.g. $f_1$, $f_2$, $2f_1/3+f_2/3$). To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rossler oscillators. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.
Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Bril
We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons
A unique approach for steady in-phase locking of lasers in an array, regardless of the array geometry, position, orientation, period or size, is presented. The approach relies on the insertion of an intra-cavity Gaussian aperture in the far-field pla
Safety and automatic control are extremely important when operating manipulators. For large engineering manipulators, the main challenge is to accurately recognize the posture of all arm segments. In classical sensing methods, the accuracy of an incl
Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scal