ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase-locking in Multi-Frequency Brillouin Oscillator via Four Wave Mixing

116   0   0.0 ( 0 )
 نشر من قبل Thomas Buettner Mr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.



قيم البحث

اقرأ أيضاً

95 - Thibaut Sylvestre 2015
This work reports the experimental observation of a new type of four-wave mixing in which frequency-degenerate weak signal and idler waves are generated by mixing two pump waves of different frequencies in a normally dispersive birefringent optical f iber. This parametric frequency fusion is what we believed the first experimental evidence of inverse four-wave mixing.
A four-wave-mixing, frequency-comb-based, hyperspectral imaging technique that is spectrally precise, potentially rapid, and can in principle be applied to any material, is demonstrated in a near-diffraction-limited microscopy application.
We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.
Simultaneous Kerr comb formation and second-harmonic generation with on-chip microresonators can greatly facilitate comb self-referencing for optical clocks and frequency metrology. Moreover, the presence of both second- and third-order nonlinearitie s results in complex cavity dynamics that is of high scientific interest but is still far from well understood. Here, we demonstrate that the interaction between the fundamental and the second-harmonic waves can provide an entirely new way of phase-matching for four-wave mixing in optical microresonators, enabling the generation of optical frequency combs in the normal dispersion regime, under conditions where comb creation is ordinarily prohibited. We derive new coupled time-domain mean-field equations and obtain simulation results showing good qualitative agreement with our experimental observations. Our findings provide a novel way of overcoming the dispersion limit for simultaneous Kerr comb formation and second-harmonic generation, which might prove especially important in the near-visible to visible range where several atomic transitions commonly used for stabilization of optical clocks are located and where the large normal material dispersion is likely to dominate.
We employ the process of non-degenerate four-wave mixing Bragg scattering (FWM-BS) to demonstrate all-optical control in a silicon platform. In our configuration, a strong, non-information-carrying pump is mixed with a weak control pump and an input signal in a silicon-on-insulator waveguide. Through the optical nonlinearity of this highly-confining waveguide, the weak pump controls the wavelength conversion process from the signal to an idler, leading to a controlled depletion of the signal. The strong pump, on the other hand, plays the role of a constant bias. In this work, we show experimentally that it is possible to implement this low-power switching technique as a first step towards universal optical logic gates, and test the performance with random binary data. Even at very low powers, where the signal and control pump levels are almost equal, the eye-diagrams remain open, indicating a successful operation of the logic gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا