ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluid dynamics in clouds: The sum of its parts

363   0   0.0 ( 0 )
 نشر من قبل Sivaramakrishnan Ravichandran
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This entry is aimed at describing cloud physics with an emphasis on fluid dynamics. As is inevitable for a review of an enormously complicated problem, it is highly selective and reflects of the authors focus. The range of scales involved, and the relevant physics at each scale is described. Particular attention is given to droplet dynamics and growth, and turbulence with and without thermodynamics.



قيم البحث

اقرأ أيضاً

Multi-fluid models have recently been proposed as an approach to improving the representation of convection in weather and climate models. This is an attractive framework as it is fundamentally dynamical, removing some of the assumptions of mass-flux convection schemes which are invalid at current model resolutions. However, it is still not understood how best to close the multi-fluid equations for atmospheric convection. In this paper we develop a simple two-fluid, single-column model with one rising and one falling fluid. No further modelling of sub-filter variability is included. We then apply this model to Rayleigh-B{e}nard convection, showing that, with minimal closures, the correct scaling of the heat flux (Nu) is predicted over six orders of magnitude of buoyancy forcing (Ra). This suggests that even a very simple two-fluid model can accurately capture the dominant coherent overturning structures of convection.
Herein, the Karman vortex system is considered to be a large recurrent neural network, and the computational capability is numerically evaluated by emulating nonlinear dynamical systems and the memory capacity. Therefore, the Reynolds number dependen ce of the Karman vortex system computational performance is revealed and the optimal computational performance is achieved near the critical Reynolds number at the onset of Karman vortex shedding, which is associated with a Hopf bifurcation. Our finding advances the understanding of the relationship between the physical properties of fluid dynamics and its computational capability as well as provides an alternative to the widely believed viewpoint that the information processing capability becomes optimal at the edge of chaos.
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi scous fluid as a whole, and takes into account multiple physical effects, including gravity, viscosity, and surface tension. Dimensionle
Convective flows coupled with solidification or melting in water bodies play a major role in shaping geophysical landscapes. Particularly in relation to the global climate warming scenario, it is essential to be able to accurately quantify how water- body environments dynamically interplay with ice formation or melting process. Previous studies have revealed the complex nature of the icing process, but have often ignored one of the most remarkable particularity of water, its density anomaly, and the induced stratification layers interacting and coupling in a complex way in presence of turbulence and phase change. By combining experiments, numerical simulations, and theoretical modeling, we investigate solidification of freshwater, properly considering phase transition, water density anomaly, and real physical properties of ice and water phases, which we show to be essential for correctly predicting the different qualitative and quantitative behaviors. We identify, with increasing thermal driving, four distinct flow-dynamics regimes, where different levels of coupling among ice front, stably and unstably stratified water layers occur. Despite the complex interaction between the ice front and fluid motions, remarkably, the average ice thickness and growth rate can be well captured with the theoretical model. It is revealed that the thermal driving has major effects on the temporal evolution of the global icing process, which can vary from a few days to a few hours in the current parameter regime. Our model can be applied to general situations where the icing dynamics occurs under different thermal and geometrical conditions (e.g. cooling conditions or water layer depth).
232 - Vitaly V. Bulatov 2008
In the paper taking the assumption of the slowness of the change of the parameters of the vertically stratified medium in the horizontal direction and in time, the evolution of the non-harmonic wave packages of the internal gravity waves has been ana lyzed. The concrete form of the wave packages can be expressed through some model functions and is defined by the local behavior of the dispersive curves of the separate modes near to the corresponding special points. The solution of this problem is possible with the help of the modified variant of the special-time ray method offered by the authors (the method of geometrical optics), the basic difference of which consists that the asymptotic representation of the solution may be found in the form the series of the non-integer degrees of some small parameter. At that the exponent depends on the concrete form of representation of this package. The obvious kind of the representation is determined from the principle of the localness and the asymptotic behavior of the solution in the stationary and the horizontally-homogeneous case. The phases of the wave packages are determined from the corresponding equations of the eikonal, which can be solved numerically on the characteristics (rays). Amplitudes of the wave packages are determined from the laws of conservation of the some invariants along the characteristics (rays).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا